区块链使用数字签名机制是什么,区块链使用数字签名机制有哪些区块链使用数字签名机制

zhousys 区块链知识 2023-09-27 13:29 911

摘要:区块链使用数字签名机制A.数字签名的原理数字签名是附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元...

区块链使用数字签名机制

A. 数字签名的原理

数字签名是附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。

它是对电子形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。基于公钥密码体制和私钥密码体制都可以获得数字签名,主要是基于公钥密码体制的数字签名。包括普通数字签名和特殊数字签名。

(1)区块链使用数字签名机制扩展阅读:

实现方法

数字签名算法依靠公钥加密技术来实现的。在公钥加密技术里,每一个使用者有一对密钥:一把公钥和一把私钥。公钥可以自由发布,但私钥则秘密保存;还有一个要求就是要让通过公钥推算出私钥的做法不可能实现。

普通的数字签名算法包括三种算法:

1.密码生成算法;

2.标记算法;

3.验证算法。

B. 怎么解读区块链的数字签名

在区块链的分布式网络里,节点之间进行通讯并达成信任,需要依赖数字签名技术,它主要实现了身份确认以及信息真实性、完整性验证。

数字签名

数字签名(又称公钥数字签名、电子签章)是一种类似写在纸上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法。一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证。就是只有信息的发送者才能产生的别人无法伪造的一段数字串,这段数字串同时也是对信息的发送者发送信息真实性的一个有效证明。简单证明 “我就是我”。

C. 区块链以什么方式保证网络中数据的安全性

区块链保证网络中数据的安全性的方式:
在区块链技术中,数字加密技术是其关键之处,一般运用的是非对称加正晌密算法,即加密时的密码与解锁时的密码是不一样的。简单来说,就是我们有专属的私钥,只要把自己的私钥保护好,把公钥给对方,对方用公钥加密文件生成密文,再将密文传给你,我们再用私钥解密得到明文,就能够保障哗清盯传输内容不被别人看到,这样子,加密数据就传输完毕啦!
同时,还有数字签名为我们加多一重保障,用来证明文件发给对方过程中没有被篡改。由此可见区块链的加密技术能够有效解决数据流通共享过程中的安全问题,可谓是大有施展之处。乱和

D. 什么是数字签名

数字签名是用于验证数字和数据真实性和完整性的加密机制。我们可以将其视为传统手写签名方式的数字化版本,并且相比于签字具有更高的复杂性和安全性。

简而言之,我们可以将数字签名理解为附加到消息或文档中的代码。在生成数字签名之后,其可以作为证明消息从发送方到接收方的传输过程中没有被篡改的证据。

虽然使用密码学保护通信机密性的概念可以追溯到古代,但随着公钥密码学(PKC)的发展,数字签名方案在20世纪70年代才成为现实。因此,要了解数字签名的工作原理,我们首先需要了解散列函数和公钥加密的基础知识。

哈希是数字签名中的核心要素之一。哈希值的运算过程是指将任意长度的数据转换为固定长度。这是通过称为散列函数的特殊运算实现的。经过散列函数运算而生成的值称为哈希值或消息摘要。

当哈希值与加密算法相结合,即使用加密散列函数的方法来生成散列值(摘要),该值可作为唯一的数字指纹。这意味着对于输入数据(消息)的任何更改都会导致有完全不同的输出值(散列值)。这就是加密散列函数被广泛用于验证数字和数据真实性的原因。

公钥加密或PKC是指使用一对密钥的加密系统:公钥和私钥。这两个密钥在数学上是相关的,可用于数据加密和数字签名。

作为一种加密工具,PKC相比于对称加密具有更高的安全性。对称加密系统依赖于相同的密钥进行加密和解密信息,但PKC则使用公钥进行数据加密,并使用相应的私钥进行数据解密。

除此之外,PKC还可以应用于生成数字签名。本质上,该过程发送方使用自己的私钥对消息(数据)的哈希值进行加密。接下来,消息的接收者可以使用签名者提供的公钥来检查该数字签名是否有效。

在某些情况下,数字签名本身可能包括了加密的过程,但并非总是这样。例如,比特币区块链使用PKC和数字签名,而并不像大多数人所认为的,这个过程中并没有进行加密。从技术上讲,比特币又部署了所谓的椭圆曲线数字签名算法(ECDSA)来验证交易。

在加密货币的背景下,数字签名系统通常包含三个基本流程:散列、签名和验证。

第一步是对消息或数据进行散列。通过散列算法对数据进行运算,生成哈希值(即消息摘要)来完成的。如上所述,消息的长度可能会有很大差异,但是当消息被散列后,它们的哈希值都具有相同的长度。这是散列函数的最基本属性。

但是,仅仅将消息进行散列并不是生成数字签名的必要条件,因为也可以使用私钥对没有进行过散列的消息进行加密。但对于加密货币,消息是需要经过散列函数处理的,因为处理固定长度的哈希值有助于加密货币的程序运行。

对信息进行散列处理后,消息的发件人需要对其消息进行签名。这里就用到了公钥密码学。有几种类型的数字签名算法,每种算法都有自己独特的运行机制。本质上,都是使用私钥对经过散列的消息(哈希值)进行签名,然后消息的接收者可以使用相应的公钥(由签名者提供)来检查其有效性。

换句话说,如果在生成签名时不使用私钥,则消息的接收者将不能使用相应的公钥来验证其有效性。公钥和私钥都是由消息的发送者生成的,但仅将公钥共享给接收者。

需要注意的是,数字签名与每条消息的内容相关联。因此,与手写签名所不同,每条消息的数字签名都是不同的。

让我们举一个例子说明下整个过程,包括从开始直到最后一步的验证。我们假设Alice向Bob发送一条消息、并将该消息进行散列得到哈希值,然后将哈希值与她的私钥结合起来生成数字签名。数字签名将作为该消息的唯一数字指纹。

当Bob收到消息时,他可以使用Alice提供的公钥来检查数字签名的有效性。这样,Bob可以确定签名是由Alice创建的,因为只有她拥有与该公钥所对应的私钥(至少这与我们所假设的一致)。

因此,Alice需要保管好私钥至关重要。如果另一个人拿到了Alice的私钥,他们就同样可以创建数字签名并伪装成Alice。在比特币的背景下,这意味着有人可以使用Alice的私钥,并可在未经她知晓的情况下转移或使用她的比特币。

数字签名通常用于实现以下三方面目标:数据完整性、身份验证和不可否认性。

数字签名可以应用于各种数字文档和证书。因此,他们有几个应用程序。一些最常见的案例包括:

数字签名方案面临的主要挑战主要局限于以下三方面因素:

简而言之,数字签名可以理解为是一种特定类型的电子签名,特指使用电子化的方式签署文档和消息。因此,所有数字签名都可认为是电子签名,但反之并非如此。

它们之间的主要区别在于身份验证方式。数字签名需要部署加密系统,例如散列函数、公钥加密和加密技术。

散列函数和公钥加密是数字签名系统的核心,现已在各种案例中使用。如果实施得当,数字签名可以提高安全性,确保完整性,便于对各类数据进行身份验证。

在区块链领域,数字签名用于签署和授权加密货币交易。它们对比特币尤为重要,因为数字签名能够确保代币只能由拥有相应私钥的人使用。

虽然我们多年来一直使用电子和数字签名,但仍有很大的发展空间。如今大部分的公文仍然还是基于纸质材料,但随着更多的系统迁移到数字化中,我们还会看到更多的数字签名方案。

E. 【深度知识】区块链之加密原理图示(加密,签名)

先放一张以太坊的架构图:

在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:

秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。

如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。

2、无法解决消息篡改。

如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。

1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。

2、同样存在无法确定消息来源的问题,和消息篡改的问题。

如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。

1、当网络上拦截到数据密文2时, 由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。

2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。

如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。

1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。
2、当B节点解密得到密文1后, 只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。

经两次非对称加密,性能问题比较严重。

基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:

当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要, 之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1, 比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。

在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。

无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。

在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢? 有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。

为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。

在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后 对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。

为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:

在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。

以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?

那么如何生成随机的共享秘钥进行加密呢?

对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥 和 临时的非对称私钥 可以计算出一个对称秘钥(KA算法-Key Agreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:

对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥 与 B节点自身的私钥 计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。

对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入 Nonce ),再比如彩虹表(参考 KDF机制解决 )之类的问题。由于时间及能力有限,故暂时忽略。

那么究竟应该采用何种加密呢?

主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。

密码套件 是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。

在整个网络的传输过程中,根据密码套件主要分如下几大类算法:

秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。

消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。

批量加密算法:比如AES, 主要用于加密信息流。

伪随机数算法:例如TLS 1.2的伪随机函数使用MAC算法的散列函数来创建一个 主密钥 ——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。

在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。

握手/网络协商阶段:

在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等

身份认证阶段:

身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。

消息加密阶段:

消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。

消息身份认证阶段/防篡改阶段:

主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。

ECC :Elliptic Curves Cryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成 公钥、私钥的算法。用于生成公私秘钥。

ECDSA :用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。 主要用于身份认证阶段

ECDH :也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。 主要用于握手磋商阶段。

ECIES: 是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH), H-MAC函数(MAC)。

ECC 是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。 ECDSA 则主要是采用ECC算法怎么来做签名, ECDH 则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。 ECIES 就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。

<meta charset="utf-8">

这个先订条件是为了保证曲线不包含奇点。

所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:

所有的非对称加密的基本原理基本都是基于一个公式 K = k G。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法 就是要保证 该公式 不可进行逆运算( 也就是说G/K是无法计算的 )。 *

ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。

我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据k G计算出我们的公钥K。并且保证公钥K也要在曲线上。*

那么k G怎么计算呢?如何计算k G才能保证最后的结果不可逆呢?这就是ECC算法要解决的。

首先,我们先随便选择一条ECC曲线,a = -3, b = 7 得到如下曲线:

在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如2 2 = 2+2,3 5 = 5+5+5。 那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。

曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。

现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。

ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。

那么P+Q+R = 0。其中0 不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。

同样,我们就能得出 P+Q = -R。 由于R 与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。

P+R+Q = 0, 故P+R = -Q , 如上图。

以上就描述了ECC曲线的世界里是如何进行加法运算的。

从上图可看出,直线与曲线只有两个交点,也就是说 直线是曲线的切线。此时P,R 重合了。

也就是P = R, 根据上述ECC的加法体系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0

于是乎得到 2 P = -Q (是不是与我们非对称算法的公式 K = k G 越来越近了)。

于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。

假若 2 可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。

那么我们是不是可以随机任何一个数的乘法都可以算呢? 答案是肯定的。 也就是点倍积 计算方式。

选一个随机数 k, 那么k * P等于多少呢?

我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描 述成二进制然后计算。假若k = 151 = 10010111

由于2 P = -Q 所以 这样就计算出了k P。 这就是点倍积算法 。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。

至于为什么这样计算 是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:

我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了 整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?

ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:

在曲线上选取一个无穷远点为基点 G = (x,y)。随机在曲线上取一点k 作为私钥, K = k*G 计算出公钥。

签名过程:

生成随机数R, 计算出RG.

根据随机数R,消息M的HASH值H,以及私钥k, 计算出签名S = (H+kx)/R.

将消息M,RG,S发送给接收方。

签名验证过程:

接收到消息M, RG,S

根据消息计算出HASH值H

根据发送方的公钥K,计算 HG/S + xK/S, 将计算的结果与 RG比较。如果相等则验证成功。

公式推论:

HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG

在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C = A+C+B = (A+C)+B。

这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考 Alice And Bob 的例子。

Alice 与Bob 要进行通信,双方前提都是基于 同一参数体系的ECC生成的 公钥和私钥。所以有ECC有共同的基点G。

生成秘钥阶段:

Alice 采用公钥算法 KA = ka * G ,生成了公钥KA和私钥ka, 并公开公钥KA。

Bob 采用公钥算法 KB = kb * G ,生成了公钥KB和私钥 kb, 并公开公钥KB。

计算ECDH阶段:

Alice 利用计算公式 Q = ka * KB 计算出一个秘钥Q。

Bob 利用计算公式 Q' = kb * KA 计算出一个秘钥Q'。

共享秘钥验证:

Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'

故 双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。

在以太坊中,采用的ECIEC的加密套件中的其他内容:

1、其中HASH算法采用的是最安全的SHA3算法 Keccak 。

2、签名算法采用的是 ECDSA

3、认证方式采用的是 H-MAC

4、ECC的参数体系采用了secp256k1, 其他参数体系 参考这里

H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:

以太坊 的 UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。

首先,以太坊的UDP通信的结构如下:

其中,sig是 经过 私钥加密的签名信息。mac是可以理解为整个消息的摘要, ptype是消息的事件类型,data则是经过RLP编码后的传输数据。

其UDP的整个的加密,认证,签名模型如下:

F. 区块链应用什么技术来实现此功能

区块链应用了以下的技术来实现
第一种是共识机制,常用的共识机制主要有PoW、PoS、DPoS、PBFT、PAXOS等。由于区块链系统中没有一个中心,因此需要有一个预设的规则来指导各方节点在数据处理上达成一致,所有的数据交互都要按照严格的规则和共识进行;
第二种是密码学技术,密码学技术是区块链的核心技术之一,目前的区块链应用中采用了很多现代密码学的经典算法,主要包括:哈希算法、对称加密、非对称加密、数字签名等。
第三种是分布式存储,区块链是一种点对点网络上的分布式账本,每个参与的节点都将独立完整地存储写入区块数据信息。分布式存储区别于传统中心化存储的优势主要体现在两个方面:每个节点上备份数据信息,避免了由于单点故障导致的数据丢失;每个节点上的数据都独立存储,有效规避了恶意篡改历史数据。
智能合约:智能合约允许在没有第三方的情况下进行可信交易,只要一方达成了协议预先设定的目标,合约将会自动执行交易,这些交易可追踪且不可逆转。具有透明可信、自动执行、强制履约的优点。区块链技术有许多独特的特点,使它成为一项独特的发明,并赋予它无限的视野去探索。

G. HNB的签名算法对区块链用户有没有帮助

数字签名,就是只有信息的发送者才能产生的别人无法伪造的一段数字串,这段数字串同时也是对信息的发送者发送信息真实性的一个有效证明。
在数字签名方面,HNB算行业最顶尖的。他采用Secp256k1椭圆曲线,Secp256k1是在比特币中使用的ECDSA(椭圆曲线数字签名算法)曲线的参数,并且在高效密码学标准中进行了定义。HNB的数字算法占用很少的带宽和存储资源,密钥的长度很短。所有的用户都可以使用同样的操作完成域运算。正是这两点,决定了HNB的签名算法可以帮助区块链用户更快捷,更方便的获取数字货币方面内容。

H. 区块链的密码技术有

密码学技术是区块链技术的核心。区块链的密码技术有数字签名算法和哈希算法。
数字签名算法
数字签名算法是数字签名标准的一个子集,表示了只用作数字签名的一个特定的公钥算法。密钥运行在由SHA-1产生的消息哈希:为了验证一个签名,要重新计算消息的哈希,使用公钥解密签名然后比较结果。缩写为DSA。

数字签名是电子签名的特殊形式。到目前为止,至少已经有 20 多个国家通过法律 认可电子签名,其中包括欧盟和美国,我国的电子签名法于 2004 年 8 月 28 日第十届全 国人民代表大会常务委员会第十一次会议通过。数字签名在 ISO 7498-2 标准中定义为: “附加在数据单元上的一些数据,或是对数据单元所作的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造”。数字签名机制提供了一种鉴别方法,以解决伪造、抵赖、冒充和篡改等问题,利用数据加密技术、数据变换技术,使收发数据双方能够满足两个条件:接收方能够鉴别发送方所宣称的身份;发送方以后不能否认其发送过该数据这一 事实。
数字签名是密码学理论中的一个重要分支。它的提出是为了对电子文档进行签名,以 替代传统纸质文档上的手写签名,因此它必须具备 5 个特性。
(1)签名是可信的。
(2)签名是不可伪造的。
(3)签名是不可重用的。
(4)签名的文件是不可改变的。
(5)签名是不可抵赖的。
哈希(hash)算法
Hash,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,其中散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,但是不可逆向推导出输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
哈希(Hash)算法,它是一种单向密码体制,即它是一个从明文到密文的不可逆的映射,只有加密过程,没有解密过程。同时,哈希函数可以将任意长度的输入经过变化以后得到固定长度的输出。哈希函数的这种单向特征和输出数据长度固定的特征使得它可以生成消息或者数据。
以比特币区块链为代表,其中工作量证明和密钥编码过程中多次使用了二次哈希,如SHA(SHA256(k))或者RIPEMD160(SHA256(K)),这种方式带来的好处是增加了工作量或者在不清楚协议的情况下增加破解难度。
以比特币区块链为代表,主要使用的两个哈希函数分别是:
1.SHA-256,主要用于完成PoW(工作量证明)计算;
2.RIPEMD160,主要用于生成比特币地址。如下图1所示,为比特币从公钥生成地址的流程。

相关推荐

评论列表
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~
关闭

用微信“扫一扫”