区块链算法关系图,区块链算法关系模型区块链算法关系

zhousys 区块链知识 2023-09-27 17:26 211

摘要:区块链算法关系❶人工智能和区块链有什么关系最近几年区块链和人工智能一直很热门首先区块链是建立去中心化的网络,所谓的去中心化,就是说这个网络不属于你也不属于我。...

区块链算法关系

❶ 人工智能和区块链有什么关系

最近几年区块链和人工智能一直很热门

首先区块链是建立去中心化的网络,所谓的去中心化,就是说这个网络不属于你也不属于我。

它属于所有人。

而人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。也就是说,“机器的自我学习”

这样一来我们就可以思考区块链与人工智能的结合了。

首先我们要了解到,区块链目前可以简单的分为三个阶段。

而在前三个阶段中,都存在着:无法正真实现去中心化 、低扩展性、出块者获得的激励与全网的最佳收益不匹配、 网络总是以最大容量运行等问题。严重的浪费资源并降低效率。

那么我们是不是可以将人工智能结合到底层公链技术当中,来解决这些问题呢?

答案是可以的!并且已经有团队研发,并已经取得了一定的进度。

Velas 是一个通过人工智能(AI)优化的神经网络来增强 其共识算法,进行自我学习和自我优化的公链,致力于提高转账过程以及智能合约的 安全性、互操作性、和高度可扩展性。 Velas 采用通过 AI 增强的 DPoS 共识,在不 降低安全性和交易速度的情况下,完全实现去中心化。不光如此, AI 根据区块链的需求选择谁来抵押代币 ;Velas 只在需要时出块; 每 1 秒到每 2 分钟之间 ;可扩展性(可扩展至 30,000 TPS) ; 区块生产商是通过人工直觉选出的。

❷ 区块链 --- 共识算法

PoW算法是一种防止分布式服务资源被滥用、拒绝服务攻击的机制。它要求节点进行适量消耗时间和资源的复杂运算,并且其运算结果能被其他节点快速验算,以耗用时间、能源做担保,以确保服务与资源被真正的需求所使用。

PoW算法中最基本的技术原理是使用哈希算法。假设求哈希值Hash(r),若原始数据为r(raw),则运算结果为R(Result)。

R = Hash(r)

哈希函数Hash()的特性是,对于任意输入值r,得出结果R,并且无法从R反推回r。当输入的原始数据r变动1比特时,其结果R值完全改变。在比特币的PoW算法中,引入算法难度d和随机值n,得到以下公式:

Rd = Hash(r+n)

该公式要求在填入随机值n的情况下,计算结果Rd的前d字节必须为0。由于哈希函数结果的未知性,每个矿工都要做大量运算之后,才能得出正确结果,而算出结果广播给全网之后,其他节点只需要进行一次哈希运算即可校验。PoW算法就是采用这种方式让计算消耗资源,而校验仅需一次。

 

PoS算法要求节点验证者必须质押一定的资金才有挖矿打包资格,并且区域链系统在选定打包节点时使用随机的方式,当节点质押的资金越多时,其被选定打包区块的概率越大。

POS模式下,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000。这个时候,如果你验证了一个POS区块,你的币龄就会被清空为0,同时从区块中获得相对应的数字货币利息。

节点通过PoS算法出块的过程如下:普通的节点要成为出块节点,首先要进行资产的质押,当轮到自己出块时,打包区块,然后向全网广播,其他验证节点将会校验区块的合法性。

 

DPoS算法和PoS算法相似,也采用股份和权益质押。

但不同的是,DPoS算法采用委托质押的方式,类似于用全民选举代表的方式选出N个超级节点记账出块。

选民把自己的选票投给某个节点,如果某个节点当选记账节点,那么该记账节点往往在获取出块奖励后,可以采用任意方式来回报自己的选民。

这N个记账节点将轮流出块,并且节点之间相互监督,如果其作恶,那么会被扣除质押金。

通过信任少量的诚信节点,可以去除区块签名过程中不必要的步骤,提高了交易的速度。
 

拜占庭问题:

拜占庭是古代东罗马帝国的首都,为了防御在每块封地都驻扎一支由单个将军带领的军队,将军之间只能靠信差传递消息。在战争时,所有将军必须达成共识,决定是否共同开战。

但是,在军队内可能有叛徒,这些人将影响将军们达成共识。拜占庭将军问题是指在已知有将军是叛徒的情况下,剩余的将军如何达成一致决策的问题。

BFT:

BFT即拜占庭容错,拜占庭容错技术是一类分布式计算领域的容错技术。拜占庭假设是对现实世界的模型化,由于硬件错误、网络拥塞或中断以及遭到恶意攻击等原因,计算机和网络可能出现不可预料的行为。拜占庭容错技术被设计用来处理这些异常行为,并满足所要解决的问题的规范要求。

拜占庭容错系统

发生故障的节点被称为 拜占庭节点 ,而正常的节点即为 非拜占庭节点

假设分布式系统拥有n台节点,并假设整个系统拜占庭节点不超过m台(n ≥ 3m + 1),拜占庭容错系统需要满足如下两个条件:

另外,拜占庭容错系统需要达成如下两个指标:

PBFT即实用拜占庭容错算法,解决了原始拜占庭容错算法效率不高的问题,算法的时间复杂度是O(n^2),使得在实际系统应用中可以解决拜占庭容错问题
 

PBFT是一种状态机副本复制算法,所有的副本在一个视图(view)轮换的过程中操作,主节点通过视图编号以及节点数集合来确定,即:主节点 p = v mod |R|。v:视图编号,|R|节点个数,p:主节点编号。

PBFT算法的共识过程如下:客户端(Client)发起消息请求(request),并广播转发至每一个副本节点(Replica),由其中一个主节点(Leader)发起提案消息pre-prepare,并广播。其他节点获取原始消息,在校验完成后发送prepare消息。每个节点收到2f+1个prepare消息,即认为已经准备完毕,并发送commit消息。当节点收到2f+1个commit消息,客户端收到f+1个相同的reply消息时,说明客户端发起的请求已经达成全网共识。

具体流程如下

客户端c向主节点p发送<REQUEST, o, t, c>请求。o: 请求的具体操作,t: 请求时客户端追加的时间戳,c:客户端标识。REQUEST: 包含消息内容m,以及消息摘要d(m)。客户端对请求进行签名。

主节点收到客户端的请求,需要进行以下交验:

a. 客户端请求消息签名是否正确。

非法请求丢弃。正确请求,分配一个编号n,编号n主要用于对客户端的请求进行排序。然后广播一条<<PRE-PREPARE, v, n, d>, m>消息给其他副本节点。v:视图编号,d客户端消息摘要,m消息内容。<PRE-PREPARE, v, n, d>进行主节点签名。n是要在某一个范围区间内的[h, H],具体原因参见 垃圾回收 章节。

副本节点i收到主节点的PRE-PREPARE消息,需要进行以下交验:

a. 主节点PRE-PREPARE消息签名是否正确。

b. 当前副本节点是否已经收到了一条在同一v下并且编号也是n,但是签名不同的PRE-PREPARE信息。

c. d与m的摘要是否一致。

d. n是否在区间[h, H]内。

非法请求丢弃。正确请求,副本节点i向其他节点包括主节点发送一条<PREPARE, v, n, d, i>消息, v, n, d, m与上述PRE-PREPARE消息内容相同,i是当前副本节点编号。<PREPARE, v, n, d, i>进行副本节点i的签名。记录PRE-PREPARE和PREPARE消息到log中,用于View Change过程中恢复未完成的请求操作。

主节点和副本节点收到PREPARE消息,需要进行以下交验:

a. 副本节点PREPARE消息签名是否正确。

b. 当前副本节点是否已经收到了同一视图v下的n。

c. n是否在区间[h, H]内。

d. d是否和当前已收到PRE-PPREPARE中的d相同

非法请求丢弃。如果副本节点i收到了2f+1个验证通过的PREPARE消息,则向其他节点包括主节点发送一条<COMMIT, v, n, d, i>消息,v, n, d, i与上述PREPARE消息内容相同。<COMMIT, v, n, d, i>进行副本节点i的签名。记录COMMIT消息到日志中,用于View Change过程中恢复未完成的请求操作。记录其他副本节点发送的PREPARE消息到log中。

主节点和副本节点收到COMMIT消息,需要进行以下交验:

a. 副本节点COMMIT消息签名是否正确。

b. 当前副本节点是否已经收到了同一视图v下的n。

c. d与m的摘要是否一致。

d. n是否在区间[h, H]内。

非法请求丢弃。如果副本节点i收到了2f+1个验证通过的COMMIT消息,说明当前网络中的大部分节点已经达成共识,运行客户端的请求操作o,并返回<REPLY, v, t, c, i, r>给客户端,r:是请求操作结果,客户端如果收到f+1个相同的REPLY消息,说明客户端发起的请求已经达成全网共识,否则客户端需要判断是否重新发送请求给主节点。记录其他副本节点发送的COMMIT消息到log中。
 

如果主节点作恶,它可能会给不同的请求编上相同的序号,或者不去分配序号,或者让相邻的序号不连续。备份节点应当有职责来主动检查这些序号的合法性。

如果主节点掉线或者作恶不广播客户端的请求,客户端设置超时机制,超时的话,向所有副本节点广播请求消息。副本节点检测出主节点作恶或者下线,发起View Change协议。

View Change协议

副本节点向其他节点广播<VIEW-CHANGE, v+1, n, C , P , i>消息。n是最新的stable checkpoint的编号, C 2f+1验证过的CheckPoint消息集合, P 是当前副本节点未完成的请求的PRE-PREPARE和PREPARE消息集合。

当主节点p = v + 1 mod |R|收到 2f 个有效的VIEW-CHANGE消息后,向其他节点广播<NEW-VIEW, v+1, V , O >消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主节点重新发起的未经完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的选取规则:

副本节点收到主节点的NEW-VIEW消息,验证有效性,有效的话,进入v+1状态,并且开始 O 中的PRE-PREPARE消息处理流程。
 

在上述算法流程中,为了确保在View Change的过程中,能够恢复先前的请求,每一个副本节点都记录一些消息到本地的log中,当执行请求后副本节点需要把之前该请求的记录消息清除掉。

最简单的做法是在Reply消息后,再执行一次当前状态的共识同步,这样做的成本比较高,因此可以在执行完多条请求K(例如:100条)后执行一次状态同步。这个状态同步消息就是CheckPoint消息。

副本节点i发送<CheckPoint, n, d, i>给其他节点,n是当前节点所保留的最后一个视图请求编号,d是对当前状态的一个摘要,该CheckPoint消息记录到log中。如果副本节点i收到了2f+1个验证过的CheckPoint消息,则清除先前日志中的消息,并以n作为当前一个stable checkpoint。

这是理想情况,实际上当副本节点i向其他节点发出CheckPoint消息后,其他节点还没有完成K条请求,所以不会立即对i的请求作出响应,它还会按照自己的节奏,向前行进,但此时发出的CheckPoint并未形成stable。

为了防止i的处理请求过快,设置一个上文提到的 高低水位区间[h, H] 来解决这个问题。低水位h等于上一个stable checkpoint的编号,高水位H = h + L,其中L是我们指定的数值,等于checkpoint周期处理请求数K的整数倍,可以设置为L = 2K。当副本节点i处理请求超过高水位H时,此时就会停止脚步,等待stable checkpoint发生变化,再继续前进。
 

在区块链场景中,一般适合于对强一致性有要求的私有链和联盟链场景。例如,在IBM主导的区块链超级账本项目中,PBFT是一个可选的共识协议。在Hyperledger的Fabric项目中,共识模块被设计成可插拔的模块,支持像PBFT、Raft等共识算法。
 

 

Raft基于领导者驱动的共识模型,其中将选举一位杰出的领导者(Leader),而该Leader将完全负责管理集群,Leader负责管理Raft集群的所有节点之间的复制日志。
 

下图中,将在启动过程中选择集群的Leader(S1),并为来自客户端的所有命令/请求提供服务。 Raft集群中的所有节点都维护一个分布式日志(复制日志)以存储和提交由客户端发出的命令(日志条目)。 Leader接受来自客户端的日志条目,并在Raft集群中的所有关注者(S2,S3,S4,S5)之间复制它们。

在Raft集群中,需要满足最少数量的节点才能提供预期的级别共识保证, 这也称为法定人数。 在Raft集群中执行操作所需的最少投票数为 (N / 2 +1) ,其中N是组中成员总数,即 投票至少超过一半 ,这也就是为什么集群节点通常为奇数的原因。 因此,在上面的示例中,我们至少需要3个节点才能具有共识保证。

如果法定仲裁节点由于任何原因不可用,也就是投票没有超过半数,则此次协商没有达成一致,并且无法提交新日志。

 

数据存储:Tidb/TiKV

日志:阿里巴巴的 DLedger

服务发现:Consul& etcd

集群调度:HashiCorp Nomad
 

只能容纳故障节点(CFT),不容纳作恶节点

顺序投票,只能串行apply,因此高并发场景下性能差
 

Raft通过解决围绕Leader选举的三个主要子问题,管理分布式日志和算法的安全性功能来解决分布式共识问题。

当我们启动一个新的Raft集群或某个领导者不可用时,将通过集群中所有成员节点之间协商来选举一个新的领导者。 因此,在给定的实例中,Raft集群的节点可以处于以下任何状态: 追随者(Follower),候选人(Candidate)或领导者(Leader)。

系统刚开始启动的时候,所有节点都是follower,在一段时间内如果它们没有收到Leader的心跳信号,follower就会转化为Candidate;

如果某个Candidate节点收到大多数节点的票,则这个Candidate就可以转化为Leader,其余的Candidate节点都会回到Follower状态;

一旦一个Leader发现系统中存在一个Leader节点比自己拥有更高的任期(Term),它就会转换为Follower。

Raft使用基于心跳的RPC机制来检测何时开始新的选举。 在正常期间, Leader 会定期向所有可用的 Follower 发送心跳消息(实际中可能把日志和心跳一起发过去)。 因此,其他节点以 Follower 状态启动,只要它从当前 Leader 那里收到周期性的心跳,就一直保持在 Follower 状态。

Follower 达到其超时时间时,它将通过以下方式启动选举程序:

根据 Candidate 从集群中其他节点收到的响应,可以得出选举的三个结果。

共识算法的实现一般是基于复制状态机(Replicated state machines),何为 复制状态机

简单来说: 相同的初识状态 + 相同的输入 = 相同的结束状态 。不同节点要以相同且确定性的函数来处理输入,而不要引入一下不确定的值,比如本地时间等。使用replicated log是一个很不错的注意,log具有持久化、保序的特点,是大多数分布式系统的基石。

有了Leader之后,客户端所有并发的请求可以在Leader这边形成一个有序的日志(状态)序列,以此来表示这些请求的先后处理顺序。Leader然后将自己的日志序列发送Follower,保持整个系统的全局一致性。注意并不是强一致性,而是 最终一致性

日志由有序编号(log index)的日志条目组成。每个日志条目包含它被创建时的任期号(term),和日志中包含的数据组成,日志包含的数据可以为任何类型,从简单类型到区块链的区块。每个日志条目可以用[ term, index, data]序列对表示,其中term表示任期, index表示索引号,data表示日志数据。

Leader 尝试在集群中的大多数节点上执行复制命令。 如果复制成功,则将命令提交给集群,并将响应发送回客户端。类似两阶段提交(2PC),不过与2PC的区别在于,leader只需要超过一半节点同意(处于工作状态)即可。

leader follower 都可能crash,那么 follower 维护的日志与 leader 相比可能出现以下情况

当出现了leader与follower不一致的情况,leader强制follower复制自己的log, Leader会从后往前试 ,每次AppendEntries失败后尝试前一个日志条目(递减nextIndex值), 直到成功找到每个Follower的日志一致位置点(基于上述的两条保证),然后向后逐条覆盖Followers在该位置之后的条目 。所以丢失的或者多出来的条目可能会持续多个任期。
 

要求候选人的日志至少与其他节点一样最新。如果不是,则跟随者节点将不投票给候选者。

意味着每个提交的条目都必须存在于这些服务器中的至少一个中。如果候选人的日志至少与该多数日志中的其他日志一样最新,则它将保存所有已提交的条目,避免了日志回滚事件的发生。

即任一任期内最多一个leader被选出。这一点非常重要,在一个复制集中任何时刻只能有一个leader。系统中同时有多余一个leader,被称之为脑裂(brain split),这是非常严重的问题,会导致数据的覆盖丢失。在raft中,两点保证了这个属性:

因此, 某一任期内一定只有一个leader
 

当集群中节点的状态发生变化(集群配置发生变化)时,系统容易受到系统故障。 因此,为防止这种情况,Raft使用了一种称为两阶段的方法来更改集群成员身份。 因此,在这种方法中,集群在实现新的成员身份配置之前首先更改为中间状态(称为联合共识)。 联合共识使系统即使在配置之间进行转换时也可用于响应客户端请求,它的主要目的是提升分布式系统的可用性。

❸ 分布式与区块链之间的关系分析

关于区块链技术的探讨我们在前几期的文章中已经说过很多次了,而且也给大家介绍了使用哪些编程开发语言来实现对区块告洞悉链技术的具现化,今天我们就一起来了解一下,如何从分布式的角度来分析理解区块链的构造。

区块链是源于比特币中的底层技术,用于实现一个无中心的点对点现金系统,因为没有中心机构的参与,比特币以区块链的形式来组织交易数据,防止“双花”,达成交易共识。

传统意义上的数字资产,比如游戏币,是以集中式的方式管理的,仅能在单个系统中流转,由某个中心化机构负责协调,通常以数据库的方式来存储。宏观上看,区块链和数据库一样,都是用来保存数据,只是数据存取袜乎的形式有所不同。

区块链本质上是一个异地多活的分布式数据库。异地多活的提出,原本是为了在解决系统的容灾问题,多年来也一直是分布式数据库领域在探索的方向,但鲜有成效,因为异地多活需要解决数据冲突的问题,这个问题其实不好解决。然而诞生于比特币的区块链以一种全新的方式实现了全球大的异地多活数据库,它完全开放,没有边界,支持上万节点并可随机的加入和退出。

在区块链中数据冲突问题就更加突出了,区块链里每个节点是完全对等的多活架构,上万个节点要达成一致,数据以谁为准呢?比特币采用的方式是POW,大家来算一个谜题,谁先算出来,就拥有记账权,在这个周期,就以他所记的账为准,下一个周期大家重新计算。争夺记账权的节点决定将哪些颤陆交易打包进区块,并将区块同步给其他节点,其他节点仍然需要基于本地数据对区块中的交易做验证,并不像数据库的主从节点间那样无条件接受,这就是区块链里的共识算法。POW虽然消耗大量算力,好处是在争夺记账权的过程中POW只要在自身节点中计算hash,不需要经过网络投票来选举,网络通信的代价小,适合大规模节点之间共识。沙河电脑培训认为POW是目前公有链里完备简单粗暴做法,经得起考验,但问题是效率太低。

所以后面发展出了PoS、DPoS,谁拥有资产多,谁就拥有记账权,或者大家投票,但这样又引入了经济学方面的问题,比如所谓的贿选的问题,这就不太好控制了。在传统分布式数据库里,不叫共识算法,而叫一致性算法,本质上也是一回事。但分布式数据库里一般节点数都很少,而且网络是可信的,通常节点都是安全可靠的,我们基本上可以相信每一个节点,即使它出现故障,不给应答,但绝对不会给出假应答。所以在传统公司分布式数据里,都用Raft或Paxos协议去做这种一致性算法。

❹ 区块链和数字人民币的关系有什么

1、我国数字人民币仅借鉴了区块链技术

数字人民币具有可追溯性、不可篡改性这些与区块链技术相同的特征,但数字人民币仅是借鉴了区块链技术。作为法定货币,数字人民币的主要特征之一为中心化的管理模式,而区块链的核心特征之一为去中心化。

发行了依托于区块链技术的数字货币国家有伊朗、厄瓜多尔、乌拉圭、塞内加尔、等,但这些数字货币没有流行起来。2020年9月,欧洲主要中央银行的高管表示,全球范围内的中央银行如果想要发行央行数字货币,其实并不需要使用区块链技术,在央行数字货币情况下,中央银行提供了“信任”,因此当中央银行介入之后就没有使用区块链技术的必要了。

在金融领域,目前区块链技术在数字货币、支付清算、数字票据、银行征信管理等方面得到了实验性或小范围应用。

2、数字人民币系统框架的核心要素为“一币,两库,三中心”

根据《中国法定数字货币原型构想》的阐述,数字人民币系统框架的核心要素为“一币,两库,三中心”。其中,“一币”指央行数字货币;“两库”指的是数字货币发行库(存放央行数字货币发行基金的数据库)和数字货币银行库(商业银行存放央行数字货币的数据库);“三中心”指的是认证中心(负责身份信息管理)、登记中心(负责数字货币权属登记)与大数据发行中心(负责对反洗钱、支付行为等分析)。

3、区块链的特征为分布式、去中心化

数字人民币经常会被使用区块链技术对的加密货币比特币、以太坊等相比较。广义来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和操作数据的一种全新的分布式基础架构与计算方式。

❺ 区块链DNA中的两种算法分别是

X链和Y链。
这里引入两条链,(事实上并不存在链)这两条也满足DNA双链的对应关系。
为了研究的方便,将这两条链分别记作X链,和Y链,Y链负责记录交易信息。X负责校验Y链记录的正确性。X链和Y链之间存在一定的关系。
定义X链上的第一个区块数据。Stringdata="IloveMaxwell",令M=hash(data,10),M是十进制数表示的data的hash值。查找素数表找到一个素数P使得最小。

❻ 区块链技术的六大核心算法

区块链技术的六大核心算法
区块链核心算法一:拜占庭协定
拜占庭的故事大概是这么说的:拜占庭帝国拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功入侵。任何单个邻邦入侵的都会失败,同时也有可能自身被其他9个邻邦入侵。拜占庭帝国防御能力如此之强,至少要有十个邻邦中的一半以上同时进攻,才有可能攻破。然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么入侵者可能都会被歼灭。于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。
在这个分布式网络里:每个将军都有一份实时与其他将军同步的消息账本。账本里有每个将军的签名都是可以验证身份的。如果有哪些消息不一致,可以知道消息不一致的是哪些将军。尽管有消息不一致的,只要超过半数同意进攻,少数服从多数,共识达成。
由此,在一个分布式的系统中,尽管有坏人,坏人可以做任意事情(不受protocol限制),比如不响应、发送错误信息、对不同节点发送不同决定、不同错误节点联合起来干坏事等等。但是,只要大多数人是好人,就完全有可能去中心化地实现共识
区块链核心算法二:非对称加密技术
在上述拜占庭协定中,如果10个将军中的几个同时发起消息,势必会造成系统的混乱,造成各说各的攻击时间方案,行动难以一致。谁都可以发起进攻的信息,但由谁来发出呢?其实这只要加入一个成本就可以了,即:一段时间内只有一个节点可以传播信息。当某个节点发出统一进攻的消息后,各个节点收到发起者的消息必须签名盖章,确认各自的身份。
在如今看来,非对称加密技术完全可以解决这个签名问题。非对称加密算法的加密和解密使用不同的两个密钥.这两个密钥就是我们经常听到的”公钥”和”私钥”。公钥和私钥一般成对出现, 如果消息使用公钥加密,那么需要该公钥对应的私钥才能解密; 同样,如果消息使用私钥加密,那么需要该私钥对应的公钥才能解密。
区块链核心算法三:容错问题
我们假设在此网络中,消息可能会丢失、损坏、延迟、重复发送,并且接受的顺序与发送的顺序不一致。此外,节点的行为可以是任意的:可以随时加入、退出网络,可以丢弃消息、伪造消息、停止工作等,还可能发生各种人为或非人为的故障。我们的算法对由共识节点组成的共识系统,提供的容错能力,这种容错能力同时包含安全性和可用性,并适用于任何网络环境。
区块链核心算法四:Paxos 算法(一致性算法)
Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“一致性算法”以保证每个节点看到的指令一致。一个通用的一致性算法可以应用在许多场景中,是分布式计算中的重要问题。节点通信存在两种模型:共享内存和消息传递。Paxos算法就是一种基于消息传递模型的一致性算法。
区块链核心算法五:共识机制
区块链共识算法主要是工作量证明和权益证明。拿比特币来说,其实从技术角度来看可以把PoW看做重复使用的Hashcash,生成工作量证明在概率上来说是一个随机的过程。开采新的机密货币,生成区块时,必须得到所有参与者的同意,那矿工必须得到区块中所有数据的PoW工作证明。与此同时矿工还要时时观察调整这项工作的难度,因为对网络要求是平均每10分钟生成一个区块。
区块链核心算法六:分布式存储
分布式存储是一种数据存储技术,通过网络使用每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在网络中的各个角落。所以,分布式存储技术并不是每台电脑都存放完整的数据,而是把数据切割后存放在不同的电脑里。就像存放100个鸡蛋,不是放在同一个篮子里,而是分开放在不同的地方,加起来的总和是100个。

❼ 数字货币与区块链的关系

1、区块链和数字货币相辅相成,密不可分,区块链是数字货币流通的手段之一。
2、区块链是数字货币的理论基础,数字货币是在区块链技术手段基础上建立起来的,区块链对数字货币的安全性有一定的保证,同时数字货币是区块链技术最成功的应用。
拓展资料:1、数字货币是一种不受管制的、数字化的货币,通常由开发者发行和管理,被特定虚拟社区的成员所接受和使用。欧洲银行业管理局将虚拟货币定义为:价值的数字化表示,不由央行或当局发行,也不与法币挂钩,但由于被公众所接受,所以可作为支付手段,也可以电子形式转移、存储或交易。
2、数字货币可以认为是一种基于节点网络和数字加密算法的虚拟货币。数字货币的核心特征主要体现了三个方面:①由于来自于某些开放的算法,数字货币没有发行主体,因此没有任何人或机构能够控制它的发行;②由于算法解的数量确定,所以数字货币的总量固定,这从根本上消除了虚拟货币滥发导致通货膨胀的可能;③由于交易过程需要网络中的各个节点的认可,因此数字货币的交易过程足够安全。
3、区块链共享价值体系首先被众多的加密货币效仿,并在工作量证明上和算法上进行了改进,如采用权益证明和SCrypt算法。随后,区块链生态系统在全球不断进化,出现了首次代币发售ICO;智能合约区块链以太坊;“轻所有权、重使用权”的资产代币化共享经济; 和区块链国家。人们正在利用这一共享价值体系,在各行各业开发去中心化电脑程序,在全球各地构建去中心化自主组织和去中心化自主社区。

相关推荐

评论列表
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~
关闭

用微信“扫一扫”