摘要:A.深入了解区块链的共识机制及算法原理所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够...
A. 深入了解区块链的共识机制及算法原理
所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。
要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。
区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。
目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。
工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。
2012年,化名Sunny King的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。
股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。
股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。
股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。
Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。
Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等
这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。
工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。
下图所示的为工作量证明流程。
举个例子,给个一个基本的字符创“hello,world!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。
通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。
下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;...;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。
由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。
统计输入的字符创与得到对应目标结果实际使用的计算次数如下:
对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。
比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。
难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。
难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:
新难度值=旧难度值*(20160分钟/过去2016个区块花费时长)。
工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:
目标值=最大目标值/难度值,其中最大目标值为一个恒定值
目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。
我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。
可以把比特币将这道工作量证明谜题的步骤大致归纳如下:
该过程可以用下图表示:
比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。
B. 区块链英文
AMA——Ask Me Anything,通常指项目方或交易负责人举办的问答活动
AMM——Automated Market Maker,自动做市商模式
AML——Anti-Money Laundering,反洗钱
BTC——Bitcoin,比特币
C. WSC温商链商业计划
注册链接: http://vip.onwsc.com/index.php/home/user/reg/uid/900099056.html
微信联系:whitislove2020
英文名:World’s Coin 中文名:世界币/温商币/
积分英文简称:Wscoin
研发者: 全球温商区块链联盟基金会
发布日期:2017 年7 月17 日
发行总量: 1.3 亿
Wscoin 最初是由海外几个温商会长共同牵头,后来通过“全球
温商区块链联盟基金会”(以下简称“温商联盟”) 组建国际区块链技术
开发团队和顶级金融人士专家,与2017年5月共同研发并运营的温商
链(WSCHAIN)旗下的一款全球性数字货币WSCOIN,翻译中文为世
界币,由于温州商人在世界范围活动广泛,同时“WS”也是“温商”
的简称,因此也有相关专家把它叫为“温商币”、“温商积分”,它
是区块链技术的全球化应用。随着移动支付和数字货币在全国取得
的良好发展以及未来全球的数字货币的全球的支付发展,以其前沿
技术为切入点,Wscoin以互联网+、众筹、文化金融、资产对价等多
种创新展模式为辅助,开发团队与全球温商联盟合全球华人商会、温
州商会等团队共同运营、共同打造为具有长期投资价值的虚拟数字货
币,作为华人为主力的全球加密货币领域,力争在未来的数字货币
应用市场跻身到全球排名前十强!
Worlds Coin(简写:WSCOIN,货币符号:W)是一种基于“点
对点”(peer-to-peer)技术和区块链技术的去中心化的数字资产,也是
MIT/X11 许可下的一个开源软件项目。WSCOIN 可以帮助用户即时
付款给世界上任何一个人。按照央行等五部委的定义,WSCOIN 也
属于虚拟商品的范畴。
“WSCOIN”由(WSCOIN)团队于2017 年7 月17 日正式发布
上线,采用POW 的工作模式,每60 秒产生一个区块,总量1.3 亿
, WSCOIN 基于区块链加密技术,深度改进了原算法存在的安全性
问题,并使得区块确认速度大幅提升,优化了交易体验。POW采矿方
式仅需普通电脑和客户端就能处理交易和维护网络安全,达到节能和
安全的目的。
区块大小:1M
挖矿模式:POW
挖矿机制:CPU 挖矿
区块速度: 60 秒
核心算法: Scrypt 算法POS2.0 协议使得POS 网络更高效、安全。
证明方式: Proof of Stake 权益证明
POW 难度调整: 每块调整一次
12 个月区块奖励: 年利率10%奖励
Wscoin 前期着重于解决分发公平性和丰富产品功能,通过前期
限量分发给各地区节点投资者,后期上线交易平台后,将结合全球
各地区温商领导人、商会、及协会和全球高端会所资源,围绕与我们
Wscoin前期战略合作的企业和文化产业重点开发,重点应用于优质项
目股权投资与全球性项目资源价值等价交换。
(1)文化传媒产业:当前,全球文化传媒产业蓬勃发展,Wscoin
将重点应用于以下业务领域:互联网、慈善、教育、养生、影视、旅
游、金融等股权项目置换。
(2)交易平台:Wscoin联盟组织将自主共同开发交易平台以及
陆续上线全球的知名交易平台, 让Wscoin 可以进行各项类资产交
易和相关应用增值。
(3)购物商城:打造全球世界联盟系统商城,同时链接全球的
拥有Wscoin的战略合作伙伴,联通关联资产,协同购物商城实现真正
的货币商业价值,促进Wscoin全球范围内流通
(4)奖励悬赏:通过Wscoin系统,一切对项目推动的用户行为
,经过系统审核,前期我们都会给予一定的奖励。
(WSCOIN)的必要说明
(WSCOIN)将成立基金会开发交易平台,用于为虚拟币玩家提
供好的区块链周边的众筹产品,包括虚拟货币,交易平台,互联网游戏
开发区块链游戏应用等系统服务,也将开发各类企业区块链应用平台和全球
温商联盟商城!未来将有望和全球知名的数字货币进行整合!
风险提示
1、投资WSCOIN 之前,认清和评估自身风险,理性投资,并合
理规避风险。
2、WSCOIN 众筹成功之后,会择机登陆国内外交易平台,请
持续关注“WSCOIN 官网www.onwsc.com ”。
3、尽管WSCOIN 项目具有极其广泛的应用前景,但WSCOIN
团队仍无法保证WSCOIN 未来的市场价值。WSCOIN 的价值由市场
决定,同时也会受到政策等不可控因素影响。WSCOIN 团队保证将
不遗余力确保项目在法律许可的范围内不断锐意创新。
4、WSCOIN 旨在推动区块链技术与互联网、物联网、区块链等
应用发展。
5、WSCOIN实力雄厚,WSCOIN目前已经由温商联盟基金会开
发完毕,对认购成功的投资人联盟管理团队会根据认购先后时间分
发对应数量的WSCOIN(分发时间为30天)。
注册链接: http://vip.onwsc.com/index.php/home/user/reg/uid/900099056.html
D. 区块链之联盟链(三) 认识Fabric
Fabric 是超级账本联盟推出的核心区块链框架,它适合在复杂的企业内和企业间搭建联盟链。根据超级账本联盟的目标, Fabric 被建设为一个模块化的、支持可插拔组件的基础联盟链框架。;
与以太坊系的Quorum不同,Fabric从一开始就只考虑企业间的应用。其独有的channel概念,将企业根据业务目的不同以不同的子网连接起来, 每一个子网对应一个channel,而每个channel有自己独立的区块链。而Quorum很显然是只有一个公网(所有企业节点都加入进去),企业与企业间的私有业务是通过Private Manager 完成的。
理解channel的最简单方法就是,将它类比为一个消息服务提供的Topic,实际上Fabic最早就是基于Kafka 的分布式消息服务来实现。
在Fabric网络中,一个企业可以有一个或多个节点加入整个联盟链;一个企业可以加入1个或者多个Channel(子网); 一个节点可以加入1个或者多个channel。每个channel构成一个子网,所以Fabric 是 一种由子网组成的网络。
那么Fabric是怎么实现智能合约的执行和完成业务上链(将事务结果记录在区块链里)的呢?
与其它框架不同, Fabric 将整个过程分成了三个阶段:
业务背书阶段 : 客户的请求发送的背书节点,通过智能合约完成业务的计算(但不更新状态),并完成背书;将背书结果返回个客户端。
业务的排序阶段 : 客户端将背书结果通过Channel被发送到排序节点(orderer),在排序节点完成事务的排序,并打包到block里,最后下发给所有连接到channel的节点。
业务验证并写入账本阶段 : 通过Gossip 网络,所有Channel的节点都会接收到新的block,节点会验证block中的每一个事务,确定是否有效:有效地将会跟新world state,无效的将会标志为“无效”,不会更新World state,但整个block会被完整的加入到帐本中(包括无效的事务)。
根据以上的描述,Fabric 节点实际可以分为 ,普通节点和Order节点:
Peer, 普通节点, 完成背书(包括只能合约的执行)和验证.
orderer, 排序节点,完成排序。
加入orderer节点的Fabric网络可以被描述如下:
每一个Channel,都定义了所有属于channel的节点,但是并不需要所有节点都连接到Orderer 节点(节点间可以通过gossip 协议通讯来传播私有数据或事务).
在区块链中,共识是区块链的基础。与公有链不同,联盟链的共识要求所有加入账本的事务是确定的、最终的,也就是不可以有分叉,区块与区块间的顺序是一定的,只存在唯一条链。在Fabric 中,这个客观需求正是由排序实现的,所有的事务将被提交给orderer节点获得确定的顺序,并最终打包成block进入帐本。 Fabric 从1.4.1开始支持基于Raft实现排序服务, 可以认为基于Raft实现共识。
基于RAFT的排序服务相对于早期的Kafka 具有更好的分布性,配置更加简单,是联盟链里常用的一个常用的达成共识的算法,Quorum就 默认使用RAFT作为共识层。简单的说,RAFT是一个leader和follower的模式, 所有加入RAFT网络的节点,任意时候都有一个leader, 只有这个leader有权决定事务的顺序,并打包成Block,其它节点只能作为follower提交事务和同步block。
基于FAFT网络,每个企业可以有一个或多个节点参与到Orderer中去。在Frabric中企业间的网络连接可以变化成如下形式:
区块链的使用用户在以太网中被称作EOA(External of Account), EOA的载体是钱包。我们沿用这个概念,来看看Fabric是如何实现用户和发起事务的。Fabric中EOA是一个CA中心发布的certificate(x.509),一个Certificate代表一个Identity(这与以太坊还是有很大区别的, 以太坊中一个EOA其实是一个hash地址),EOA能够参与的channel以及被授权的操作是有channel的MSP( Membership Service Provider)决定的(如下图)。
注:certificate 是一种密码学上验证身份的通用做法; certificate包含了个人的信息,公钥以及发布这个certificate的CA的签名。验证方只需要拥有这个CA的证书(包含CA的公钥),就可以验证这个签名是否正确,certificate的内容是否有篡改。简单的说,通过CA和Certificate,我们可以获得一个可验证的的身份和信任链。
如上图,fabric中通要使用Wallet作为EOA的载体,一个Wallet中可以包含多个Identity(x.509 certificate)。 Identity 通过 CA提供的信任链来验证正确性。
验证了身份之后, Fabric 通过MSP在区块链网络中解决该身份是否代表组织的成员和在组织内具有什么角色。例如,channel首先会验证当前用户Identity是否是有效地身份,然后通过MSP查看其所处的企业和具有的角色,最终确定该用户是否有权执行操作。
可以说,Fabric的访问控制是通过MSP来完成的。在每一个需要访问控制的地方都需要定义一个MSP。 例如,每个channel都定义一个MSP,这个MSP规定了在channel范围内资源的访问权限。 MSP 是Fabric里一个晦涩难懂的概念,也是其赋予企业间安全访问的基础。
前文提到, Fabric 将业务处理和上网分成了三个部分, 背书,排序,验证后加入账本。
其中背书是Fabric执行智能合约的阶段。以太坊中,智能合约是在EVM中执行的,有多种语言支持。 在Fabric,智能合约被称为chaincode: 一个chaincode 可以理解为是智能合约的容器,可以包含一个或多个智能合约, 不用于EVM, chaincode是在 JVM 或NodeJS中执行。
客户应用程序通过智能合约来访问账本,每一个可访问的智能合约都被安装在客户端可以访问的节点上,并被定义在channel里。(有只能合约的节点被称为背书节点,没有只能合约的节点被称未提交节点,提交节点只维护账本)
客户应用提交一个交易请求, 请求到达背书节点, 背书节点首先会验证客户的签名,确保客户的身份有权执行本次交易,接着执行交易提及的智能合约(chaincode),并生成一个背书响应(或者叫做交易提案,tran-proposal)。这个背书响应中通常包含World state 的读集合,写集合, 以及节点对本次交易的签名。这里与以太坊系联盟链最主要的不同是: 背书阶段只模拟交易,并不真正更新交易结果。 而真正更新交易在第三阶段完成。背书节点最后将生成的背书响应fanhui给客户端, 智能合约部分的执行就结束了。
通常一个交易的执行需要多方的签名,所以客户端需要将一个交易发送给多个背书节点,这些背书节点的选择需要满足背书策略的要求。
下图是一个包含有客户、背书节点,提交节点的网络示意图。
根据Fabric官方的参考文档,客户交易的正果过程可使用下图描述。
如上图,从1到3,为背书阶段,4为排序阶段,4.1,4,2, 5为验证提交阶段。 参考 Frabic的节点 概念,可以了解更多在交易细节的概念。
总的来看, Fabric 更专注于企业间,通过上文,可以让大家对Fabric的基本构成与概念有一个总的了解。 Fabric本身并不神秘,都是使用的现有的企业间的技术。要更好的了解,建议参考阅读分布式消息系统和企业的安全基础设施(CA相关)的支持。与以太坊系联盟链实现比较, Fabric 的子网更概念对于复杂企业间应用适应更强,但是其复杂的安全考量,使得运营成本很高,另外,Fabric 使用Certificate做为用户身份,有很大的局限性,在新的2.0里,Fabric对于此处将有所改变。
下一篇,我们将来看看Sawtooth , 由Inter 提供的区块链框架。
区块链之联盟链(一) 认识以太坊
区块链之联盟链(二) 认识Quotum
区块链之联盟链(三) 认识Fabric
区块链之联盟链(四) 认识Sawtooth
E. 区块链和HyperLedger Fabric(五)共享账本
peer ledger:存储在背书节点和记账节点
orderer ledger:存储在order service node
Chaincode是无状态的。Chaincode存储在节点上,账本只会存储hash值
账本的隔离和隐私性用多通道(Multiple Channels)技术来保护
Query System Chaincode(QSCC)
背书节点需提前设定,也作为记账节点
transaction事务处理流1.X
• client应用(向一个或多个Peer节点(背书节点))发送交易请求(对事务的背书请求);
• 背书节点模拟执行ChainCode,但并不将结果提交到本地账本(World state,不会修改底层账本),只是将结果(读写集)加密签名返回给client应用;
• 应用收集所有背书节点的结果后,验证背书策略是否满足和模拟执行结果是否一致(去除不确定无效的交易,1.0未实现)将结果广播给Orderers;
• Orderers执行共识过程,并生成Block,通过消息通道批量的将Block发布给Peer节点(记账节点);
• 各个Peer节点验证交易,并提交到本地账本中.通知client端处理结果
记账节点Committing Peer:维护账本和状态
合约部署都需要指定背书策略。AND,OR,OutOf
背书策略在chaincode实例化时指定
ESCC
VSCC
账本保存Blockchain和World state(维护当前状态,方便应用快速查询)
Block(s):Block header(Block number,当前区块hash,前区块hash),Block data,Block Metadata(写入时间,写入人,签名)
transactions:header(名字,version),签名,proposal(input参数),Pesponse(执行结果前后的数据),Endorsements(背书节点返回的结果list)
World State:kv形式。维护账本当前信息
Smart Contract:业务角度。定义组织的业务规则,创建交易,记录到账本,打包进chaincode。操作World state DB:get,put,delete(put和delete会增加新的记录,block。只会删除world state的数据,在账本里新增记录)
chaincode可以包含多个合约,实现打包的角度
Chaincode Lifecycle
打包(签名,)--安装(peer)--实例化--运行
更新--运行
一个peer可以安装多个chaincode
System Chaincode
运行在peer上,LSCC(Lifecycle),CSCC(配置),QSCC(查询)
Peer
Leader Peer:连接order推送新的区块,随机传播其它记账节点。选举方式(静态指定,动态生成)。一个分区一个leader。
Anchor Peer:(Gossip协议,降低order负担)节点相互认识。
共识:读写集
网络搭建:
1.配置启动order Service
2.配置启动peer
3.安装chaincode
4.创建channel
5.加入channel
6.实例化chaincode
F. 求《区块链金融应用发展白皮书》全文免费下载百度网盘资源,谢谢~
《区块链金融应用发展白皮书》网络网盘pdf最新全集下载:
链接:https://pan..com/s/14fz2mEhF_jjphAmS7DHe6g
简介:本白皮书主要聚焦以银行业为主的金融领域。第一章阐述了区块链的定义、应用模式及发展现状等情况。第二章重点解析了金融领域的现状痛点以及区块链对金融领域的应用价值。第三章详细梳理了区块链金融领域典型应用场景,通过解析业务痛点、提出解决方案及分享优秀应用案例供银行同业及相关机构参考。第四章研究提出区块链面临的挑战,对未来发展进行了分析展望。
G. 区块链能应用在哪些方面
您的问题我已看到,那么,区块链能应用在哪些方面?下面由小编来为您解答。
答:比特币是区块链的第一个具体应用。它是在 2008 年由一个人或一群人提出的一篇论文中提出的。比特币使用区块链来对比特币进行数字发送,而 BitCoin 的名称是比特币,而不需要第三方中间人的干涉。
但比特币并不是区块链的唯一应用,如下:
1.金融领域:将区块链技术应用在金融行业中,能够省去第三方中介环节,实现点对点的直接对接,从而在大大降低成本的同时,快速完成交易支付。
2.物联网和物流领域:区块链在物联网和物流领域也可以天然结合。通过区块链可以降低物流成本,追溯物品的生产和运送过程,并且提高供应链管理的效率。
3.公共服务领域:区块链在公共管理、能源、交通等领域都与民众的生产生活息息相关,但是这些领域的中心化特质也带来了一些问题,可以用区块链来改造。
4.数字版权领域:通过区块链技术,可以对作品进行鉴权,证明文字、视频、音频等作品的存在,保证权属的真实、唯一性
5.保险领域:在保险理赔方面,保险机构负责资金归集、投资、理赔,往往管理和运营成本较高。通过智能合约的应用,既无需投保人申请,也无需保险公司批准,只要触发理赔条件,实现保单自动理赔。
6.公益领域:区块链上存储的数据,高可靠且不可篡改,天然适合用在社会公益场景。公益流程中的相关信息,如捐赠项目、募集明细、资金流向、受助人反馈等,均可以存放于区块链上,并且有条件地进行透明公开公示,方便社会监督。
以上仅供您参考,还望您能采纳,谢谢!
H. MeWorld数字货币是什么软件
不是很正常吗?小软件吗,当然不太靠谱。你就像这个网络知道,他一开始一块钱能提现现在,在不知情的情况下,不也改到了30。所以说软件的运营商都有改动的权利。所以说你要么等,要么就把它当做一个骗子的软件。反正怎么说呢,也不太现实。你要想挣钱的话,就找一些大的软件,这样比较靠谱一点。祝你节日快乐,祝你好运连连,祝你孤独终老,祝你长命百岁,祝你幸福快乐
I. 1.4亿用户的Maps.me进入加密世界,区块链的应用落实在哪
一款应用app究竟能具备多少功能呢?如果有一款app可以结合高德地图+大众点评+携程的功能,甚至还会融入支付宝的功能,你会如何看待和使用这样的app呢?
这个想法不是异想天开,知名出行应用Maps.me已经完成了5000万美金的种子轮融资,并且加密风头Genesis Trading 与 CMS 等机构参投。这不仅是金融和出行的结合,更是一种新的支付和生活方式的结合。
这也是区块链最直接的应用,通过嫁接在app之中的某个功能模块,让用户了解、熟悉、甚至开始操作,并且获得收益。通过最简单易懂的方式和渠道,为用户了解加密世界、区块链打开了一扇大门。除了应用在金融上之外,其实区块链的产业应用也非常多,因为区块链本身的特性就标志着它可以进行溯源、唯一、去中心化,所以可以借助这些特点,结合app的实际操作做更多的深入研发。而金融,只是它最本质也是最好理解的一面。
J. 未来劳动环境中什么技术将解决互联网信任与价值的可靠传递难题
未来劳动环境中区块链技术将解决互联网信任与价值的可靠传递难题。
互联网:
互联网(英语:internet),又称网际网路或音译因特网、英特网,是网络与网络之间所串连成的庞大网络,这些网络以一组通用的协定相连,形成逻辑上的单一巨大国际网络。这种将计算机网络互相联接在一起的方法可称作“网络互联”,在这基础上发展出覆盖全世界的全球性互联网络称“互联网”,即是“互相连接一起的网络”。
互联网并不等同万维网(WorldWideWeb),万维网只是一建基于超文本相互链接而成的全球性系统,且是互联网所能提供的服务其中之一。单独提起互联网,一般都是互联网或接入其中的某网络,有时将其简称为网或网络(theNet)可以通讯、社交、网上贸易。