区块链是怎么保证不被篡改的呢,区块链是怎么保证不被篡改的信息区块链是怎么保证不被篡改的

zhousys 区块链知识 2023-10-26 16:58 273

摘要:区块链是怎么保证不被篡改的加密算法:区块链是一种去中心化的数据库,它使用加密算法来保证数据的安全性和不可篡改性。加密算法可以将数据进行加密,以防止数据被非法篡改...

区块链是怎么保证不被篡改的

加密算法:区块链是一种去中心化的数据库,它使用加密算法来保证数据的安全性和不可篡改性。加密算法可以将数据进行加密,以防止数据被非法篡改。

分布式账本:区块链使用分布式账本系统来存储所有的交易记录,这意味着每个节点都有一份完整的账本,从而防止交易记录被篡改。

共识机制:区块链使用共识机制来确保数据的安全性和可靠性,这意味着只有在全网节点都同意的情况下,数据才能被添加到区块链上,从而确保数据的安全性和不可篡改性。

1. 区块链不可篡改的原因

1. 交易不可被篡改
2. 区块体不可被篡改
3. 区块头不可被篡改
4. 区块链不可被篡改
拓展资料:
1、区块链的共识机制具备“少数服从多数”以及“人人平等”的特点,其中“少数服从多数”并不完全指节点个数,也可以是计算能力、股权数或者其他的计算机可以比较的特征量。“人人平等”是当节点满足条件时,所有节点都有权优先提出共识结果、直接被其他节点认同后并最后有可能成为最终共识结果。以比特币为例,采用的是工作量证明,只有在控制了全网超过51%的记账节点的情况下,才有可能伪造出一条不存在的记录。当加入区块链的节点足够多的时候,这基本上不可能,从而杜绝了造假的可能
2、智能合约是基于这些可信的不可篡改的数据,可以自动化的执行一些预先定义好的规则和条款。以保险为例,如果说每个人的信息(包括医疗信息和风险发生的信息)都是真实可信的,那就很容易的在一些标准化的保险产品中,去进行自动化的理赔。在保险公司的日常业务中,虽然交易不像银行和证券行业那样频繁,但是对可信数据的依赖是有增无减。因此,笔者认为利用区块链技术,从数据管理的角度切入,能够有效地帮助保险公司提高风险管理能力。具体来讲主要分投保人风险管理和保险公司的风险监督
3、区块链通过结点连接的散状网络分层结构,能够在整个网络中实现信息的全面传递,并能够检验信息的准确程度。这种特性一 定程度上提高了物联网交易的便利性和智能化。区块链+大数据的解决方案就利用了大数据的自动筛选过滤模式,在区块链中建立信用资源,可双重提高交易的安全性,并提高物联网交易便利程度。为智能物流模式应用节约时间成本。区块链结点具有十分自由的进出能力,可独立的参与或离开区块链体系,不对整个区块链体系有任何干扰。区块链 +大数据解决方案就利用了大数据的整合能力,促使物联网基础用户拓展更具有方向性,便于在智能物流的分散用户之间实现用户拓展

2. 区块链为什么不可篡改解析其基本原理

区块链不可篡改的工作原理是什么?要理解这一点,我们需要引入一个概念:哈希算法。哈希算法有很多种,其基本功能是将任意长度的数据文件转换成唯一对应的定长字符串。

你可以理解为任何文件都会生成一串固定长度的乱码标签。

这个算法是不可逆的,也就是说,当你得到这个标签的时候,你无法逆向推导出原始数据文件。

如果数据文件中有细微的变化,比如添加了一个标点符号,那么重新哈希后,新的标签会和原来的标签有很大的不同。

从新旧标签之间的差异来推断数据文件发生了什么是不可能的。因此,很容易验证某个文件在某个时刻是否存在,或者两个文件是否相同。

正是这种不可逆转性决定了区块链的不可逆转性。在每个块中,除了十分钟内的转账交易数据之外,还有一个块头。

标头包含先前块数据的哈希值。这些hash逐层嵌套,长度固定,最后所有的块串联起来形成一个区块链。区块链包含了自链诞生以来发生的所有交易和新的货币发行。

如果我是个坏人,我会篡改协议。包括交易的发送者和接收者以及转账的金额。发送者发送的比特币可以一直追溯到该货币新发行的最早区块。

发送方拥有这些比特币的合法性由该货币的原始发行区块记录和所有与该货币相关的历史交易记录来保证。

因此,篡改一次交易,意味着后续所有的哈希和相关交易记录都要被再次篡改,这需要极高的计算能力和难度,成功概率为零。

3. 区块链不可篡改的关键是

区块链的每个区块头均封装有前一个区块的哈希码,这个机制就确保了区块链数据不可篡改的技术特征。
区块链是当前科技产业发展的趋势,“去中心化”和“不可篡改”是普通人所能脱口而出的技术优势。“去中心化”被很好地理解为一种非集中和无组织的行动。然而,从目前的发展来看,区块链技术的应用还比较薄弱和多中心。

4. 区块链如何保证使用安全

区块链项目(尤其是公有链)的一个特点是开源。通过开放源代码,来提高项目的可信性,也使更多的人可以参与进来。但源代码的开放也使得攻击者对于区块链系统的攻击变得更加容易。近两年就发生多起黑客攻击事件,近日就有匿名币Verge(XVG)再次遭到攻击,攻击者锁定了XVG代码中的某个漏洞,该漏洞允许恶意矿工在区块上添加虚假的时间戳,随后快速挖出新块,短短的几个小时内谋取了近价值175万美元的数字货币。虽然随后攻击就被成功制止,然而没人能够保证未来攻击者是否会再次出击。

当然,区块链开发者们也可以采取一些措施

一是使用专业的代码审计服务,

二是了解安全编码规范,防患于未然。

密码算法的安全性

随着量子计算机的发展将会给现在使用的密码体系带来重大的安全威胁。区块链主要依赖椭圆曲线公钥加密算法生成数字签名来安全地交易,目前最常用的ECDSA、RSA、DSA 等在理论上都不能承受量子攻击,将会存在较大的风险,越来越多的研究人员开始关注能够抵抗量子攻击的密码算法。

当然,除了改变算法,还有一个方法可以提升一定的安全性:

参考比特币对于公钥地址的处理方式,降低公钥泄露所带来的潜在的风险。作为用户,尤其是比特币用户,每次交易后的余额都采用新的地址进行存储,确保有比特币资金存储的地址的公钥不外泄。

共识机制的安全性

当前的共识机制有工作量证明(Proof of Work,PoW)、权益证明(Proof of Stake,PoS)、授权权益证明(Delegated Proof of Stake,DPoS)、实用拜占庭容错(Practical Byzantine Fault Tolerance,PBFT)等。

PoW 面临51%攻击问题。由于PoW 依赖于算力,当攻击者具备算力优势时,找到新的区块的概率将会大于其他节点,这时其具备了撤销已经发生的交易的能力。需要说明的是,即便在这种情况下,攻击者也只能修改自己的交易而不能修改其他用户的交易(攻击者没有其他用户的私钥)。

在PoS 中,攻击者在持有超过51%的Token 量时才能够攻击成功,这相对于PoW 中的51%算力来说,更加困难。

在PBFT 中,恶意节点小于总节点的1/3 时系统是安全的。总的来说,任何共识机制都有其成立的条件,作为攻击者,还需要考虑的是,一旦攻击成功,将会造成该系统的价值归零,这时攻击者除了破坏之外,并没有得到其他有价值的回报。

对于区块链项目的设计者而言,应该了解清楚各个共识机制的优劣,从而选择出合适的共识机制或者根据场景需要,设计新的共识机制。

智能合约的安全性

智能合约具备运行成本低、人为干预风险小等优势,但如果智能合约的设计存在问题,将有可能带来较大的损失。2016 年6 月,以太坊最大众筹项目The DAO 被攻击,黑客获得超过350 万个以太币,后来导致以太坊分叉为ETH 和ETC。

对此提出的措施有两个方面:

一是对智能合约进行安全审计,

二是遵循智能合约安全开发原则。

智能合约的安全开发原则有:对可能的错误有所准备,确保代码能够正确的处理出现的bug 和漏洞;谨慎发布智能合约,做好功能测试与安全测试,充分考虑边界;保持智能合约的简洁;关注区块链威胁情报,并及时检查更新;清楚区块链的特性,如谨慎调用外部合约等。

数字钱包的安全性

数字钱包主要存在三方面的安全隐患:第一,设计缺陷。2014 年底,某签报因一个严重的随机数问题(R 值重复)造成用户丢失数百枚数字资产。第二,数字钱包中包含恶意代码。第三,电脑、手机丢失或损坏导致的丢失资产。

应对措施主要有四个方面:

一是确保私钥的随机性;

二是在软件安装前进行散列值校验,确保数字钱包软件没有被篡改过;

三是使用冷钱包;

四是对私钥进行备份。

5. 百科:如何理解区块链的不可篡改性

区块链技术,也称为分布式账本技术。

在区块链里面,由于每个人(计算机)都有一模一样的账本,并且每个人(计算机)都有着完全相等的权利,因此不会由于单个人(计算机)失去联系或宕机,而导致整个系统崩溃。

既然有一模一样的账本,就意味着所有的数据都是公开透明的,每一个人可以看到每一个账户上到底有什么数字变化。

它非常有趣的特性就是,其中的数据无法篡改。因为系统会自动比较,会认为相同数量最多的账本是真的账本,少部分和别人数量不一样的账本是虚假的账本。

在这种情况下,任何人篡改自己的账本是没有任何意义的,因为除非你能够篡改整个系统里面大部分节点。

如果整个系统节点只有五个、十个节点也许还容易做到,但是如果有上万个甚至上十万个,并且还分布在互联网上的任何角落,除非某个人能控制世界上大多数的电脑,否则不太可能篡改这样大型的区块链

6. 区块链以什么方式保证数据安全

在区块链技术中,数字加密技术是其关键之处,一般运用的是非对称加密算法,即加密时的密码与解锁时的密码是不一样的。
简单来说,就是我们有专属的私钥,只要把自己的私钥保护好,把公钥给对方,对方用公钥加密文件生成密文,再将密文传给你,我们再用私钥解密得到明文,就能够保障传输内容不被别人看到,这样子,加密数据就传输完毕了。同时,还有数字签名为我们加多一重保障,用来证明文件发给对方过程中没有被篡改。
作为底层加密技术,区块链加密技术能够有效保障数据安全,改变当下数据易泄露、易被利用的现状,让个人信息数据得到全面的保护,也有望给物联网、大数据、信用监管、移动办公等领域带来亟需的改变。

7. 为什么区块链可以做到不可篡改

区块链是一个分布式账本数据库,它的核心就是信任的本质,即仍然使用账本,账本中是一条条无法篡改的记录,要做吵告升到无法篡改,它的设计就和传统的账本有2点区别:
在每条记录中添加了一个签名
区块链网络中的每个设备都维护了一个完整且相同的账本
区块链的另一个特点是这个总账本在每个计算机中都保留了一份,同时每一份是一模一样的,这就可以保证一份账本被破坏了(磁盘损坏或被人篡改导致不可用),其他机器上的账本还是可以使用的,确保了数据不会丢失友慧。
以上两点是区块链能够建立信任关系的核心技术,它保证了数据是可靠的不可篡改的,这一点革命性的实现了两个陌生人之间的信任传递不需要中间机构的参与,有了这个基础,整个“新制度经济学”将不复存在,乃至于以此衍生的信任公司都将被取代,这大概也升老是为什么支付宝2017年1月宣布引入区块链技术的原因,大胆预测一下将来的互联网公司都会建立在区块链之上,可以想象的有产权链、食品安全链、金融服务链、区块链的链等等。
区块链的应用领域有数字货币、通证、金融、防伪溯源、隐私保护、供应链、娱乐等等,区块链、比特币的火爆,不少相关的top域名都被注册,对域名行业产生了比较大的影响。

8. 区块链是怎样防止数据篡改的

区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。

跟传统的分布式存储有所不同,区块链的分布式存储的独特性主要体现在两个方面:一是区块链每个节点都按照块链式结构存储完整的数据,传统分布式存储一般是将数据按照一定的规则分成多份进行存储。二是区块链每个节点存储都是独立的、地位等同的,依靠共识机制保证存储的一致性,而传统分布式存储一般是通过中心节点往其他备份节点同步数据。

没有任何一个节点可以单独记录账本数据,从而避免了单一记账人被控制或者被贿赂而记假账的可能性。也由于记账节点足够多,理论上讲除非所有的节点被破坏,否则账目就不会丢失,从而保证了账目数据的安全性。

存储在区块链上的交易信息是公开的,但是账户身份信息是高度加密的,只有在数据拥有者授权的情况下才能访问到,从而保证了数据的安全和个人的隐私。

区块链提出了四种不同的共识机制,适用于不同的应用场景,在效率和安全性之间取得平衡。

基于以上特点,这种数据存储技术是可以完美防止数据被篡改的可能性,在现实中也可以运用到很多领域之中,比我们的电子存证技术在电子合同签署上提供了更安全可靠的保证。

9. 区块链技术

背景:比特币诞生之后,发现该技术很先进,才发现了区块链技术。比特币和区块链技术同时被发现。

1.1 比特币诞生的目的:

①货币交易就有记录,即账本;

②中心化机构记账弊端——可篡改;易超发

比特币解决第一个问题:防篡改——hash函数

1.2 hash函数(加密方式)

①作用:将任意长度的字符串,转换成固定长度(sha256)的输出。输出也被称为hash值。

②特点:很难找到两个不同的x和y,使得h(x)=h(y)。

③应用:md5文件加密

1.3 区块链

①定义

区块:将总账本拆分成区块存储

区块链:在每个区块上,增加区块头。其中记录父区块的hash值。通过每个区块存储父区块的hash值,将所有的区块按照顺序连接起来,形成区块链。

②区块链如何防止交易记录被篡改

形成区块链后,篡改任一交易,会导致该交易区块hash值和其子区块中不同,发现篡改。

即使继续篡改子区块头中hash值,会导致子区块hash值和孙区块中不同,发现篡改。


1.4 区块链本质

①比特币和区块链本质:一个人人可见的大账本,只记录交易。

②核心技术:通过密码学hash函数+数据结构,保证账本记录不可篡改。

③核心功能:创造信任。法币依靠政府公信力,比特币依靠技术。

1.5如何交易

①进行交易,需要有账号和密码,对应公钥和私钥

私钥:一串256位的二进制数字,获取不需要申请,甚至不需要电脑,自己抛硬币256次就生成了私钥

地址由私钥转化而成。地址不能反推私钥。

地址即身份,代表了在比特币世界的ID。

一个地址产生之后,只有进入区块链账本,才能被大家知道。

②数字签名技术

签名函数sign(张三的私钥,转账信息:张三转10元给李四) = 本次转账签名

验证韩式verify(张三的地址,转账信息:张三转10元给李四,本次转账签名) = True

张三通过签名函数sign(),使用自己的私钥对本次交易进行签名。

任何人可以通过验证韩式vertify(),来验证此次签名是否有由持有张三私钥的张三本人发出。是返回true,反之为false。

sign()和verify()由密码学保证不被破解。·

③完成交易

张三将转账信息和签名在全网供内部。在账户有余额的前提下,验证签名是true后,即会记录到区块链账本中。一旦记录,张三的账户减少10元,李四增加10元。

支持一对一,一对多,多对已,多对多的交易方式。


比特币世界中,私钥就是一切!!!

1.6中心化记账

①中心化记账优点:

a.不管哪个中心记账,都不用太担心

b.中心化记账,效率高

②中心化记账缺点:

a 拒绝服务攻击

b 厌倦后停止服务

c 中心机构易被攻击。比如破坏服务器、网络,监守自盗、法律终止、政府干预等

历史 上所有有中心化机构的机密货币尝试都失败了。


比特币解决第二个问题:如何去中心化

1.7 去中心化记账

①去中心化:人人都可以记账。每个人都可以保留完整的账本。

任何人都可以下载开源程序,参与P2P网络,监听全世界发送的交易,成为记账节点,参与记账。

②去中心化记账流程

某人发起一笔交易后,向全网广播。

每个记账节点,持续监听、持续全网交易。收到一笔新交易,验证准确性后,将其放入交易池并继续向其它节点传播。

因为网络传播,同一时间不同记账节点的交一次不一定相同。

每隔10分钟,从所有记账节点当中,按照某种方式抽取1名,将其交易池作为下一个区块,并向全网广播。

其它节点根据最新的区块中的交易,删除自己交易池中已经被记录的交易,继续记账,等待下一次被选中。

③去中心化记账特点

每隔10分钟产生一个区块,但不是所有在这10分钟之内的交易都能记录。

获得记账权的记账节点,将得到50个比特币的奖励。每21万个区块(约4年)后,奖励减半。总量约2100万枚,预计2040年开采完。

记录一个区块的奖励,也是比特币唯一的发行方式。

④如何分配记账权:POW(proof of work) 方式

记账几点通过计算一下数学题,来争夺记账权。

找到某随即数,使得一下不等式成立:

除了从0开始遍历随机数碰运气之外,没有其它解法,解题的过程,又叫做挖矿。

谁先解对,谁就得到记账权。

某记账节点率先找到解,即向全网公布。其他节点验证无误之后,在新区块之后重新开始新一轮的计算。这个方式被称为POW。

⑤难度调整

每个区块产生的时间并不是正好10分钟

随着比特币发展,全网算力不算提升。

为了应对算力的变化,每隔2016个区块(大约2周),会加大或者减少难度,使得每个区块产生的平均时间是10分钟。

#欧易OKEx# #比特币[超话]# #数字货币#

10. 区块链使用安全如何来保证呢

区块链本身解决的就是陌生人之间大规模协作问题,即陌生人在不需要彼此信任的情况下就可以相互协作。那么如何保证陌生人之间的信任来实现彼此的共识机制呢?中心化的系统利用的是可信的第三方背书,比如银行,银行在老百姓看来是可靠的值得信任的机构,老百姓可以信赖银行,由银行解决现实中的纠纷问题。但是,去中心化的区块链是如何保证信任的呢?
实际上,区块链是利用现代密码学的基础原理来确保其安全机制的。密码学和安全领域所涉及的知识体系十分繁杂,我这里只介绍与区块链相关的密码学基础知识,包括Hash算法、加密算法、信息摘要和数字签名、零知识证明、量子密码学等。您可以通过这节课来了解运用密码学技术下的区块链如何保证其机密性、完整性、认证性和不可抵赖性。
基础课程第七课 区块链安全基础知识
一、哈希算法(Hash算法)
哈希函数(Hash),又称为散列函数。哈希函数:Hash(原始信息) = 摘要信息,哈希函数能将任意长度的二进制明文串映射为较短的(一般是固定长度的)二进制串(Hash值)。
一个好的哈希算法具备以下4个特点:
1、 一一对应:同样的明文输入和哈希算法,总能得到相同的摘要信息输出。
2、 输入敏感:明文输入哪怕发生任何最微小的变化,新产生的摘要信息都会发生较大变化,与原来的输出差异巨大。
3、 易于验证:明文输入和哈希算法都是公开的,任何人都可以自行计算,输出的哈希值是否正确。
4、 不可逆:如果只有输出的哈希值,由哈希算法是绝对无法反推出明文的。
5、 冲突避免:很难找到两段内容不同的明文,而它们的Hash值一致(发生碰撞)。
举例说明:
Hash(张三借给李四10万,借期6个月) = 123456789012
账本上记录了123456789012这样一条记录。
可以看出哈希函数有4个作用:
简化信息
很好理解,哈希后的信息变短了。
标识信息
可以使用123456789012来标识原始信息,摘要信息也称为原始信息的id。
隐匿信息
账本是123456789012这样一条记录,原始信息被隐匿。
验证信息
假如李四在还款时欺骗说,张三只借给李四5万,双方可以用哈希取值后与之前记录的哈希值123456789012来验证原始信息
Hash(张三借给李四5万,借期6个月)=987654321098
987654321098与123456789012完全不同,则证明李四说谎了,则成功的保证了信息的不可篡改性。
常见的Hash算法包括MD4、MD5、SHA系列算法,现在主流领域使用的基本都是SHA系列算法。SHA(Secure Hash Algorithm)并非一个算法,而是一组hash算法。最初是SHA-1系列,现在主流应用的是SHA-224、SHA-256、SHA-384、SHA-512算法(通称SHA-2),最近也提出了SHA-3相关算法,如以太坊所使用的KECCAK-256就是属于这种算法。
MD5是一个非常经典的Hash算法,不过可惜的是它和SHA-1算法都已经被破解,被业内认为其安全性不足以应用于商业场景,一般推荐至少是SHA2-256或者更安全的算法。
哈希算法在区块链中得到广泛使用,例如区块中,后一个区块均会包含前一个区块的哈希值,并且以后一个区块的内容+前一个区块的哈希值共同计算后一个区块的哈希值,保证了链的连续性和不可篡改性。
二、加解密算法
加解密算法是密码学的核心技术,从设计理念上可以分为两大基础类型:对称加密算法与非对称加密算法。根据加解密过程中所使用的密钥是否相同来加以区分,两种模式适用于不同的需求,恰好形成互补关系,有时也可以组合使用,形成混合加密机制。
对称加密算法(symmetric cryptography,又称公共密钥加密,common-key cryptography),加解密的密钥都是相同的,其优势是计算效率高,加密强度高;其缺点是需要提前共享密钥,容易泄露丢失密钥。常见的算法有DES、3DES、AES等。
非对称加密算法(asymmetric cryptography,又称公钥加密,public-key cryptography),与加解密的密钥是不同的,其优势是无需提前共享密钥;其缺点在于计算效率低,只能加密篇幅较短的内容。常见的算法有RSA、SM2、ElGamal和椭圆曲线系列算法等。 对称加密算法,适用于大量数据的加解密过程;不能用于签名场景:并且往往需要提前分发好密钥。非对称加密算法一般适用于签名场景或密钥协商,但是不适于大量数据的加解密。
三、信息摘要和数字签名
顾名思义,信息摘要是对信息内容进行Hash运算,获取唯一的摘要值来替代原始完整的信息内容。信息摘要是Hash算法最重要的一个用途。利用Hash函数的抗碰撞性特点,信息摘要可以解决内容未被篡改过的问题。
数字签名与在纸质合同上签名确认合同内容和证明身份类似,数字签名基于非对称加密,既可以用于证明某数字内容的完整性,同时又可以确认来源(或不可抵赖)。
我们对数字签名有两个特性要求,使其与我们对手写签名的预期一致。第一,只有你自己可以制作本人的签名,但是任何看到它的人都可以验证其有效性;第二,我们希望签名只与某一特定文件有关,而不支持其他文件。这些都可以通过我们上面的非对称加密算法来实现数字签名。
在实践中,我们一般都是对信息的哈希值进行签名,而不是对信息本身进行签名,这是由非对称加密算法的效率所决定的。相对应于区块链中,则是对哈希指针进行签名,如果用这种方式,前面的是整个结构,而非仅仅哈希指针本身。
四 、零知识证明(Zero Knowledge proof)
零知识证明是指证明者在不向验证者提供任何额外信息的前提下,使验证者相信某个论断是正确的。
零知识证明一般满足三个条件:
1、 完整性(Complteness):真实的证明可以让验证者成功验证;
2、 可靠性(Soundness):虚假的证明无法让验证者通过验证;
3、 零知识(Zero-Knowledge):如果得到证明,无法从证明过程中获知证明信息之外的任何信息。
五、量子密码学(Quantum cryptography)
随着量子计算和量子通信的研究受到越来越多的关注,未来量子密码学将对密码学信息安全产生巨大冲击。
量子计算的核心原理就是利用量子比特可以同时处于多个相干叠加态,理论上可以通过少量量子比特来表达大量信息,同时进行处理,大大提高计算速度。
这样的话,目前的大量加密算法,从理论上来说都是不可靠的,是可被破解的,那么使得加密算法不得不升级换代,否则就会被量子计算所攻破。
众所周知,量子计算现在还仅停留在理论阶段,距离大规模商用还有较远的距离。不过新一代的加密算法,都要考虑到这种情况存在的可能性。

相关推荐

评论列表
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~
关闭

用微信“扫一扫”