摘要:区块链设计解决方案的原液❶区块链应用开发找哪家好区块链技术是通过2008年由中本聪编写的题为“比特币:对等电子现金系统”的论文宣布的。有趣的是,本文没有专门使...
区块链设计解决方案的原液
❶ 区块链应用开发找哪家好
区块链技术是通过2008年由中本聪编写的题为“比特币:对等电子现金系统”的论文宣布的。有趣的是,本文没有专门使用“区块链”这个词。
本文讨论的是“纯粹的电子现金版本”,其中“网络通过将交易哈希到持续的基于散列的工作证明链中来标记交易时间,创建一条无需重做证明即可更改的记录”工作的”。
开源的PT-BSC(区块链安全控制)将区块链定义为点对点网络,通过将它们散列到正在进行的基于散列的工作量证明链中来记录时间戳记,形成不能成为记录的记录改变而不重做工作证明。区块链可以被授权,无权限或混合使用。
另一方面,分布式账本被定义为对等网络,该网络使用定义的共识机制来防止修改有序的时间戳记录序列。共识机制包括证明利益,联合拜占庭协议等。
最流行的区块链平台
1.以太坊
以太坊是一个开源的Blockchain平台,运行智能合约并为其创建提供编程工具。在2013年由Vitalik Buterin提出后,该平台简化了下一代分散式应用程序(DApps)和在线合同协议的开发。
以太坊允许设计和发行加密货币和可交易的数字令牌。更重要的是,您可以创建自己的DAO(民主自治组织),例如,一个虚拟组织,通过成员投票解决各种问题。
该平台提供了许多有用的功能,包括图灵完整语言,命令行工具(内置于Go,C ++,Python,Java等)以及Ethereum钱包,这是最后一个支持和保护加密资产并简化智能合约的开发者发展。
2. BigChainDB
BigChainDB是一个开源的分布式账本系统,专为存储大量数据而设计,并支持开发人员部署区块链概念验证和应用程序。
该数据库提供分散控制,低延迟,不变性,强大的查询功能以及高速的事务处理。
该系统没有自己的货币,但允许发行和转让任何资产,代币和加密货币。BigChainDB支持自定义数字资产并在事务级别建立访问权限。
BigChainDB基于联邦共识模型,一个拥有投票权限的节点联盟。BigChainDB支持公共和私人网络,有许多用例,包括知识产权,人力资源,政府和土地登记等领域。
此外,深入了解比特币,以太坊和BigchainDB的比较。
3.Blockchain Hyperledger Fabric
Blockchain Hyperledger Fabric是由The Linux Foundation主办并于2016年发布的最受欢迎的Hyperledger项目之一。Hyperledger Fabric是Go编写的,使用Docker容器实现智能合约。
该平台是基于模块化架构构建基于区块链的解决方案的基础,并支持使用一个或多个网络。为了确保高水平的灵活性,可靠性和可扩展性,Hyperledger Fabric最适合开发企业解决方案。
考虑到有用的功能,它包含共享机密信息和交易背书政策的渠道。此外,交易还包括所有签署同行的签名,并提交给订购服务。Hyperledger Fabric是创建授权区块链的最佳平台之一。
4.Hyperledger Cello
Hyperledger Cello是一个区块链平台和操作系统,也是Linux基金会托管的Hyperledger项目之一。Hyperledger Cello的目标是通过向Blockchain生态系统提供按需“即服务”部署模式,最大限度地减少设计和管理区块链的工作量。
Hyperledger Cello使开发人员能够从头创建区块链即服务(BaaS)平台,并管理区块链的生命周期。更重要的是,通过Cello,他们可以在裸机,虚拟云和容器集群之上维护一组网络(大提琴支持Docker,Swarm和Kubernetes)。
5. Hyperledger锯齿湖
Hyperledger Sawtooth Lake是一个区块链平台,代表支持许可和无许可开发的企业解决方案。该平台帮助软件工程师更轻松地创建,部署和运行分布式账本系统和应用程序。
Sawtooth Lake是一个用Python编写的模块化套件,提供智能合同抽象,允许开发人员以他们想要的编程语言编写合同逻辑。Hyperledger Sawtooth中的交易业务逻辑与共识层分离。
共识机制称为经过时间证明(PoET),并使用内置于最新一代英特尔处理器中的SGX可信计算模块。
对于锯齿湖有很多有用的应用。例如,在供应链管理和海鲜配送中,它可以解决诸如食物储存条件不当,非法捕捞行为和海鲜欺诈等问题。
此外,Hyperledger Sawtooth可以确保创建和交换数字资产的安全基础设施。了解一下,锯齿湖及其解决方案如何在不同领域发挥作用。
6. Hydrachain
HydraChain是Ethereum Blockchain平台的开源扩展,为开发和部署许可的分布式分类帐提供支持。
HydraChain完全兼容以太坊协议,并提供了一个基础设施来创建Python中的智能合约。Hydrachain有许多工具可以缩短开发时间并提高调试功能。
重要的是,HydraChain可以确保高水平的定制:系统的各个方面可以轻松配置以满足客户的需求。例如,在创建智能合约时,交易费用,天然气限额,创世分配和封锁时间等事项可以轻松定制。
7. Corda
Corda是一个开源的Blockchain平台,用于构建许可的分布式账本系统。该项目由R3联盟创建,结合了大型银行并允许管理各方之间的法律协议。
像其他分布式分类帐一样,R3 Corda提供安全的数据存储和不可变的数据记录。值得注意的是,只有Corda才能开发交互操作的区块链网络,这些网络在严格的隐私中进行交易。目前,它可能是唯一一个有可插拔共识的分布式账本平台。
8. Multichain
Multichain是一个开源分布式账本系统,基于比特币区块链,专为处理多币种金融交易而设计。
该平台提供各种级别的访问控制和权限,并实现快速解决方案部署。在Multichain中,各种网络可以同时在一台服务器上。
9.开链
作为一个开源的区块链平台,Openchain以强大,安全和可扩展的方式为数字资产的发布和管理而设计。该技术包括智能合约模块,统一的API,以及由于分级账户系统的多级控制和访问权限。
在Openchain中,每笔交易都进行了数字签名(就像比特币一样),共识机制由分部共识引入。你应该注意到Openchain是免费的,所以你不需要花钱加密货币来使用它。
10.链核心
Chain Core是一个企业级的区块链平台,由Chain Protocol和链接协议设计,用于在许可的区块链网络上发布,传输和管理数字资产。此外,该平台还使开发人员能够从头开始创建金融服务。
在连锁核心中,本地数字资产涉及货币,证券,衍生品,礼品卡和忠诚点。该平台提供基于角色的权限访问管理,以便在网络中运行。Chain Core具有联合共识,并提供智能合同支持,交易隐私和多重签名帐户支持。
❷ 区块链技术在石油和天然气行业的应用
在本文中,我们将探讨区块链技术在优化石油和天然气行业的一些潜在应用。
区块链使原油交易数字化
区块链为原油行业提供了三个方面的好处,将交易数字化以提高安全性、透明度和效率。2017 年,Natixis、IBM 和 Trafigura 率先使用智能合约平台为美国原油交易推出区块链技术解决方案。
区块链使买家、卖家和银行能够实时的共享信息,通过同一个账本,改进从确认订单到交付或者取消的流程。
区块链技术提高信任度
区块链在石油和天然气行业中的另一个可能的应用是存储操作安全相关的关键工业设备所需的证书。公司的区块链网络可以安全地记录和存储员工或承包商的认证,例如 H2S 、急救、焊接证书等等。通过将这些信息存储在区块链网络中,所有成员可以随时进行证书和标准操作程序的验证,从而提高利益相关者之间的信任度。
区块链技术的作用不仅仅是提高公司与承包商/员工之间的信任,还可以帮助解决诸如昂贵的雇佣和确保工作绩效安全等问题。
❸ 区块链底层技术PK
常见的区块链底层技术:Ethereum(以太坊),EOS,Fabirc,Fisco Bcos,CITA
平台简介
1.Ethereum
以太坊( Ethereum )是由Vitalik Buterin和Gavin Wood领导开发的支持智能合约的 去中心化应用 平台。以太坊提供图灵完备的脚本语言,极大拓展了区块链技术的应用。项目于2013年末发布 白皮书 启动,2015年7月产生创世区块。近期即将进行扩容升级。
2.EOS
EOS 是由BM(Daniel Larimer)领导开发的区块链应用平台,已于2018年6月正式上线。其slogan是“去中心化一切”,旨在为区块链提供更高的性能。
3.Fabric
Fabric是由开源超级账本( Hyper ledger)区块链联盟发布的可用于构建应用的产品级解决方案,并且已有上百个概念证明项目会进行过构建。于2017年7月发布正式版。
4.CITA
CITA是由EEA(企业以太坊联盟)创始成员之一的 Crypt ape秘猿科技自主研发的企业级区块链产品原型。CITA以高可靠性、高性能、高扩展性以及未来适应性为设计目标,于2017年7月发布开源版本。
5.BCOS
BCOS是微众银行、万向区块链、矩阵元联合创建的企业级应用服务的区块链技术平台,为分布式商业提供完备的区块链技术基础设施及服务。2017年7月BCOS第一阶段正式开源。
* Fabric在隐私保护方面做得最出色,有CA机制
国际难题: 跨链技术
为了解决传统互联网世界的信息孤岛问题,区块链使用去中心化网络的结构,试图实现信息共享来解决数据孤岛的问题。然而,众多区块链应用的出现,区块链的链与链之间并不互通,使区块链也面临这一种“孤链”的窘境。不符合区块链的初衷。
如何根据业务功能、隐私保护、数据隔离、性能容量扩展的需求等,在同一个区块链平台实施多链共存。如何在身份准入机制、信息标准、业务形态都不一致的区块链平台之间实施信息和业务交互。有望将成为开发的重要方向。
转自【链世界】: https://www.7234.cn/news/2316
❹ borderless无界币的区块链是否处于世界顶端科技与其他虚拟货币相比,优势是否比较明显
1. Borderless系统的技术支持
1) 高效且可扩展性能
Borderless系统实现超 10 万次/s批量转账
高性能的区块链技术对加密货币和智能合约平台来说是必须的,能够为业界提供一个有可能代替现有金融平台的解决方案。为了能够实现比VISA和MasterCard每秒可以处理交易数量更快的速度,无界从底层开始重新设计。通过股份授权证明机制,无界网络可以在平均一秒的时间内确认超 10 万次转账交易。
Borderless系统架构总览
要达到行业里面最顶级的性能,无界借鉴LMAX交易所的经验。这个 LMAX 交易所可以在每秒内处理高达 6 百万次的交易。无界借鉴其技术的关键点,如下:
a) 将一切东西放在内存里面
b) 将核心的业务逻辑放到一个单线程里面
c) 将加密算法操作(哈希和签名)放在核心业务逻辑以外
d) 将校验的操作分成状态独立和状态依赖检查
e) 使用一种面向对象的数据模型
通过遵守这些简单的规则,无界在未进行颠覆式优化工作的情况下,实现了每秒处理 10 万次转账的高效性能。如果有进一步的优化工作的话,会让无界可以达到与 LMAX 交易所相近的性能表现(即每秒 600 万次)。需要注意到,无界达到这样的性能表现是高度依赖其中的一个兼容交易协议。如果想用业务逻辑运行在一个进行加密算法操作和用哈希识别器去调用所有对象的虚拟机上的话,不可能达到同样层级的性能表现。区块链天生就是单线程的,而单核的 CPU 的性能是各种资源中最短缺的、最难扩展的一个方面。 无界的技术逻辑能够让这个单线程的执行达到极可能的高效。
Borderless系统核心业务背书
区块链是一个下达关于确定去修改一个共享的全局状态交易的全球账本。这些交易中包含的命令可以改变其他交易的有效性。例如,你不能在你的支票存入生效前,从你的银行账户里支取金额。在能够影响一个特定的账户的所有先前交易都被处理之前,你不可能知道一个交易是否有效。 如果两个无关联的账号没有共享任何通用的依赖关系的话,理论上这两个账号的交易可以是在同一时间进行处理的。实际上,在一个由具备仲裁条件的智能合 约驱动的账本上识别哪些交易是真正独立存在的耗费是很棘手的。唯一的保证两个交易是真正独立存在的方法,是通过维护完全分离的账本,然后定期在它们之间传输价值。如果要用这种性能表现的权衡关系去打比方的话,可以像是非一致内存访问架构(Non-Uniform Memory Access ,NUMA)和一致内存访 问架构(Uniform Memory Access ,UMA)之间的关系。 实际上,一致内存访问架构对开发者来说是更容易去设计的,而且耗费更低。非一致内存访问架构通常是在建造超级计算机和大型计算机集群时作为不得已的方法去采用的。 计算机产业逐渐意识到通过平行计算去实现性能的扩张并没有早期那么容易,毕竟那时候最需要做的事情只是提高处理器的频率而已。就是因为这个原因,处理器的设计者们在尝试去采用多线程设去提高性能之前都在拼命去提高单线程的性能。当多线程还不够的话,而且只有这样的话,集群计算这个方案才会被考虑。
很多加密货币产业的人在没有探索过在技术上一台电脑的单个核心能实现什么之前,就尝试通过用集群计算的方案去解决可扩展性的问题。
2) LMAX Disruptor 分解器技术
LMAX 分解器提供了一个在单线程上可以实现什么表现的学习例子。LMAX 是一个针对终端顾客的交易平台,目标是成为世界上最快的交易所。它们一直很慷 慨地将他们学到的东西公布出来。
LMAX架构的概要总览:
业务逻辑处理器是所有顺序交易和订单匹配发生的地方。它是一个可以每秒处理百万级别订单的单线程。这个架构可以很容易地用在加密货币和区块链设计的 领域。 输入分解器扮演的角色是从很多来自不同源头的用户里面收集订单,然后分配给它们一个确定的顺序。当给它们分配好顺序后,它们会被复制、记录然后广播 到很多冗余的业务逻辑处理器。输入分解器是高度并行的,而且容易分包到一个计算机集群系统中。 当业务逻辑处理器处理完输入后,一个输出分解器负责通知那些关心结果的人。这也是一个高度并行的任务。 最终,通过在业务逻辑处理器里使用单线程样品化处理器和 Java 虚拟机,LMAX 可以在每秒内执行 600 万次交易。如果 LMAX 可以达到这个成绩,那么加密 货币和智能合约平台平不需要在每秒连 10 个交易都不到的情况下去考虑集群网络方案。 高性能区块链
要建造一个高性能的区块链,我们需要使用 LMAX 同样的技术。这是几个必须实现的事项: 将所有东西放在内存上,避免同步原语(锁定,原子操作),避免在业务逻辑处理器上不必要的计算。 由于内存的设计是高度并行的,因此越来越便宜。追踪互联网上每个人的账户余额和权限所需要的数据量是可以放在小于 1TB 的 RAM 内存上,这用不到 15000 美元的价格就能买到了,而且可以装在商品化(高端)的服务器主板上。在这个系统被 30 亿人采用之前,这类硬件会在普通的桌面计算机里面看到。 真正的瓶颈不是内存容量的需求,而是带宽的需求。在每秒 100 万次交易和每笔交易占 256 字节的情况下,网络会需要 256MB 每秒的数据量,即 1Gbit/s 的 带宽。这样的带宽在普通的桌面计算机上并不是常见的。不过,这样的带宽只是二代互联网 100Gbit/s 带宽的一点而已。这个二代互联网被供应给超过 210 个 美国教育机构、70 家公司和 45 个非盈利机构和政府机构。
另一句话说,区块链技术可以轻松将所有东西保存在内存里,而且如果设计的合理的话可以扩展到支持每秒百万级别的转账。
3) 分配ID并避免哈希计算
在单线程系统的系统里面,处理器周期是需要被保留的稀缺资源。传统的区块链设计使用加密算法基础上的哈希计算去生成一个全球独特的ID系统,以实现统计学上不会有碰撞的保证。进行这些哈希计算的问题是,它会耗用越来越多的内存和处理器周期。与一个直接的数组索引相比,这种方式会显著地占用更多处理器的时间去查找一个账户的记录。例如,64位的整数对比和操作起来都要比160位以上的ID更简单。更大的哈希ID机制意味着CPU缓存里面的空间更少了,而需要更多的内存。在现代的操作系统里不常访问的随机存储器是会被压缩的,不过哈希识别器是随机数,这是没法压缩的。型号区块链给了我们一个在全球内分配独特的ID的方法,这些ID互相之间不会起冲突,因此完全避免使用像比特币地址那样的哈希算法为基础的识别器去引用一个账号、余额或者许可。
4) 从业务逻辑处理器中去除签名校验
所有在加密货币网络的交易依赖于用加密算法签名去校验权限。大部分情况下,请求的权限可以由其他交易的结果改变。这意味着在业务逻辑处理器里面,权限需要被定义成与加密算法计算无关的情况。
要达到这个目的,所有的公钥需要分配一个独特的和不可代替的ID。当ID被分配后,输入分解器可以校验提供的签名与指定的ID是否匹配。当交易到达业务逻辑处理器后,只需要去检查ID就可以了。
这个同样的技术可以在拥有不可代替的静态ID的对象上实现去除前提条件检查。
5) 为静态校验设计交易
对交易来说,有很多特性是可以进行静态检查的,而不需要引用当前的全局状态。这些检查包括参数的范围检查、输入的去冗余和数组排序等。通常来说,有很多检查是可以被进行的,如果交易包含它“假设”是全局状态的数据的话。在这些检查被执行后,业务逻辑处理器必须要做的事情就只有去确保这些假设还是正确的,这个过程总结下来就是检查一个涉及交易签名时间的对象引用的修改时间戳。
6) 智能合约
很多区块链正在整合一种通用的脚本语言去定义所有的操作。这些设计最终将业务逻辑处理器定义为一个虚拟机,而所有的交易被定义为由这个虚拟机运行的脚本。这个方案有一个在真实处理器上的单线程性能极限,并且由于将所有东西强制通过一个虚拟处理器去执行,让问题更严重了。一个虚拟处理器即使用上了实施编译技术(JIT)也总会比一个真正的处理器要慢,不过计算速度并不是这种“任何东西都是一个脚本”方案的唯一问题。当交易被定义在这么低的层次上,意味着静态检查和加密算法操作还是会被包含到业务逻辑处理的环节里,这也让会让整体的吞吐量降低。一个脚本引擎永远不应该要求执行一个加密算法签名检查的请求,即使这个请求是通过原生的机制实现的。
根据我们从LMAX上学到的课程,我们知道一个为区块链设计的虚拟机应该考虑到单线程表现。这意味着在一开始就要为实施编译优化,而且最常用的智能合约应该通过区块链原生支持,而只有那些不常用的、定制的合约会运行在一个虚拟机上。这些定制的合约设计的时候要考虑性能,这意味着虚拟机应该将可以访问的内存范围限制到可以放在处理器缓存上的级别。
7) 面向对象的数据模式
在内存中保存所有东西的其中一个好处是,软件可以设计成模仿现实世界中数据的关系。这意味着业务逻辑处理器可以迅速根据内存内的指针去找到数据,而不是被迫去进行耗费高的数据库查询任务。这意味着数据不需要复制就能访问了,而且可以当场就被修改。这个优化提供了比任何数据库为基础的方案高一个数量级的性能表现。
Borderless无界系统的高效性能的成功创建,是建立在在核心业务逻辑上去除与关键性、订单依赖性和评估无关的计算任务,并且设计一个可以帮助优化这些事项的协议。这就是无界做的事情。
现在市场98%的虚拟货币是无法达到borderless无界币区块链技术,优势十分显著。
❺ aBey区块链技术什么东西
希望能帮到你:
网页链接
aBey区块链技术是来自于罗马尼亚蒂米什瓦拉西部大学 数学与信息学院 计算机科学系的两位人工智能系博士:Ciprian Pungila & Vorel Negru的自主研究项目。采用了恒定轻化区块链技术和多层编程及拓展的区块链解决方案。aBey的区块链规模始终保持不变,其规模仅为50个活跃区块。aBey区块链技术适用于利用电子货币在电子商务系统中进行 大批量交易,且具有多层次性、可扩展性和安全性并可进行编程。
官方白皮书声称aBey适用于电子商务系统中利用数字货币进行大批量交易 并可进行多层编程及拓展的区块链解决方案。
aBey区块链技术的具体实行方法:
利用一种多层次且可编程的区块链方法实现数字货币(为简单起见,我们称之为“DC”)。该方法可为执行各种电子商务用途(如:贷款融资、完成可退款交易和不可退款交易等)铺平道路。在区块链的第一层可实现固有的数字货币设计—即我们通常所说的基础层(“FL”)。在基础上建立的各种不同的上层,可用于描述与各种不同商业驱动型应用实例相关的各种附加功能(我们将在下文中予以简要介绍)。所有上述层级均具有完全可编程性,并且极容易经改编后,适用于各种不同的应用实例。
尽管现如今的绝大多数数字货均在区块链中储存交易差额,但aBey的方法更类似于PascalCoin数字货币。该方法使用我们称之为“Vault” 的加密结构。“Vault”结构可在网络中仅保存所有账户的余额,而不是所有已完成交易的完整清单,并可在区块链演变历史中完成重构。鉴于Vault可允许随时删除无用内容,因此可大幅降低区块链的储存成本。与此相比,在作者撰写本文时,下载比特币数据库所需的储存空间为70GB(报警率仍持续增长,预计在2019年达到300GB),因此使用储存空间较小(如,120GB或256GB)的超极本或笔记本实施挖矿操作已处于不可行状态。另一方面,aBey区块链的规模将始终保持不变,其规模仅为50个区块(在撰写本文时,比特币区块链中的区块已超过525,000个)。
Vault完全支持账户之间的数字货币转账。此外,Vault可向每个账户分配所有者界定的名称,而不是像今天的加密货币一样利用哈希算法—这可使账户更容易记忆,并且可向公众公开名称。
Vault有助于防止区块链日常费用过高(特别是与交易历史相关的费用)的重要功能之一是,Vault可通过创建有关区块链状态的安全副本,实现保存此类状态并同时降低区块链自身规模的目的。由于无需交易历史,并且所有账户均可保存其直接余额,因此区块链信息具有可部分擦除的特征。所有可储存的区块链状态均可被视为该区块链的界标。
安全数据共享:
通过区块链结构设计,对于发送到网络中的每次交易,区块链可能均包含经加密的元数据。该元数据仅可由交易接收人解密。对于向网络中发送的交易,通过在此类交易中包含发送人公钥,并由交易接收人利用公钥解密元数据实现这一目的。由于交易接收人持有用于解密的私钥,因此仅可由交易接收人实施数据解密过程。从加密方法角度来说,尽管比特币仅限于使用椭圆曲线密码学,但区块链元数据可使用任何其他加密机制完成加密过程。这不仅可在安全性选择方面提供完全的灵活性,而且不会对区块链的结构或功能造成任何不良影响。
可扩展性:
鉴于aBey区块链支持通过设计创建历史界标,因此从区块链将始终需要不断储存(与现有的最新SL有关)角度来说,网络自身将非常容易实现高扩展性。该方法完全消除了为计算所有账户的余额而储存交易历史的需要,并且可直接储存所有账户余额,进而可确保网络中所有节点提供的特定余额信息,均符合拜占庭一致性要求。
安全性和工作量证明:
根据涉及,在aBey的方法中不可能出现双向支付操作(在指定适当的场景中,现如今的绝大多数主流加密货币在理论上可能存在双向支付操作)。每次交易均意味着按照相对简单的方式更新相应账户的余额,并且无任何可将交易从网络待处理交易队里中还原的特殊方式。对于aBey区块链来说,鉴于所有技术层/功能层均建立在Vault上,因此Vault是我们区块链的基础结构,因此Vault对挖矿操作非常重要。我们提议的区块链模型由一系列区块组成,其中每个区块均由网络中自愿挖矿的节点,通过使用工作量证明模型经挖矿后生成。网络中的所有节点均可根据交易(区块的组成部分)独立更新账户余额,并与其他节点相互独立。挖矿操作将对第一功能层造成影响。除更新余额之外,每个节点还可更新区块链结构组成中,可能属于上层功能层的其他事项。一旦出现更新状况,则将创建一个全新的挖矿奖励区块。该挖矿奖励区块中包含多个全新且已分配给矿工的奖励账户。矿工根据工作量证明作为上述奖励的获得者(目前奖励账户的数量50个)。奖励的方式是向奖励获得者分配所有此类账户的公钥。
区块链技术层:
aBey的数字货币模式中包含多层结构,其中第一层表示实现数字货币自身(有关图形解释,请参阅图7)。相应层级包括:
第1层→数字货币(加密货币):货币转让,挖矿
第2层→可退款交易和不可退款交易:允许使用数字公正系统完成可退款交易
第3层→关联方和佣金:允许向关联方自动分配佣金
第4层→接触货币:通过借出货币,基于利息获得收入
第5层→可编程:经保留后可供未来实现图灵完整编程模型使用,以便于按照自定义方式处理区块链数据 (如,智能合同等)
第6层→自定义协议:保留以供未来使用
交易类型:
aBey的模式可允许通过设计,在区块链中不同的层级,完成多种交易类型。第欱层中的交易类型如下所述:
1→资金转移:账户之间转移资金(1对1转移)
2→可退款型资金转移:账户之间的可退款交易。使用托管余额代替常规账户余额
3→密钥更改:更改可用于处理账户的密钥
4→恢复账户:从失去的,无效的账户中恢复资金
5→设置账户名称:定义创始人所持帐户的名称
6→销售准备:标记准备销售的账户
7→移出销售队列:去除账户销售标记,并将账户标记为不可销售
可退款交易和调解人:
对于绝大多数实例来说,不可退款交易等同于所有基于区块链的数字货币模式中的欱对欱付款交易。但aBey已在自己的数字货币模式中引入可退款交易概念。在aBey模式中,利用小旗标记交易属于可退款标记或不可退款交易。除此之外,在aBey的区块链网络中,每个账户都包含两种类型的余额:常规且不可变更的余额(用于标记该账户已收到且可立即支出,但支出后不可收回的金额)和托管余额(包含被标记为可退款交易的交易清单,以及每次交易的分钟数)。
8→付款争议:针对已被标记为可退款交易的相应交易,发起付款争议,但仅可由付款人发起。
9→退款请求:针对先前被标记为可退款交易的相应交易,发起退款请求,但仅可由付款人发起。
10→取消托管:取消托管资金,并立即向付款人返还资金。仅可由收款人发起。
11→解除托管:解除托管资金,并立即将金额加至收款人账户余额。仅可由付款人发起。
关联方和佣金:
当今由区块链驱动的金融科技存在的重要缺失之一是,缺乏对销售特定产品或服务的关联方提供奖励的能力。aBey区块链第3层可以解决这一问题。
借出数字货币:
借出数字货币不仅是一种允许人们借入法定货币的简单快捷方法,而且还可保证加密资产的安全。鉴于现如今的有价数字货币同样用于交易,因此借出数字货币可行的原因不仅在于允许借款人抵押其储蓄的任何类型的加密货币,而且其具有吸引力的原因在于,这也是一种可以按照完全安全或极低风险的方式,保留自身数字资产。此外,aBey的模式还通过客户Vault借出网关(VLG)提供内置保护,并使VLG可作为贷款人和借款人之间的缓冲器。
12→借入资金:由借款人在网络内发起交易、宣布借入资金的意图,并指定借入资金的VLG账户。该交易类似于在选定的VLG账户中存入常规/托管账户余额
13→返还抵押品:由VLG自身发起交易。VLG将按照风险处理政策,向借款人返还抵押品。
14→偿还贷款:由借款人发起交易。如果VLG接受以数字货币形式偿还贷款,则借款人可选择利用数字货币偿还贷款。在此条件下,数字货币资金将被转变为VLG常规账户余额。
可编程的区块链:
通过与其相关的元数据有效负荷,区块链的第欵层可被保留为可允许通过执行基于语法的“完全图灵基本编程语言”,按照原始区块链数据处理方式,进一步创建网络中对等方之间的智能合同。对于每个有效负荷,均可实施加密或公众可见处理,并且可在专门的虚拟环境(类似于虚拟机)中执行。该方法可有效保护数据安全并避免遭受数据破坏和安全漏洞的影响。该方法的主要优点是,该层可在无需任何区块链特定编程的条件下,创建并强制执行数字化合同。对于本层面,我们将在未来升级过程中慎重考虑该层的延伸方向,并界定实现相应功能所需的适当语法和语义环境。同时,未来建立的其他层级(第6层、第7层和更高层级)可用于按照需求,扩展适用于更多使用案例的相关协议。但其缺点在于,实现上述功能将需要区块链自身完成“软分叉”或“硬分叉”过程。
实验结果:
aBey当前正在实施相关实验,并将在全球最大的开源平台—GitHub上公布实验结果。
❻ 《区块链原理、设计与应用》pdf下载在线阅读,求百度网盘云资源
《区块链原理、设计与应用》(杨保华)电子书网盘下载免费在线阅读
资源链接:
链接:https://pan..com/s/1DdjQcCL5D84cnoqm-HcBjg 提取码:8u8b
书名:区块链原理、设计与应用
作者:杨保华
豆瓣评分:7.2
出版社:机械工业出版社
出版年份:2017-8-21
页数:366
内容简介:
本书由超级账本核心设计和开发者撰写,是区块链开发落地专业指南。由浅入深,系统化介绍超级账本Fabric设计精华、应用开发等。全书分为理论篇和实践篇两大部分;第1~3章介绍区块链技术的由来、核心思想及典型的应用场景;第4~5章重点介绍区块链技术中大量出现的分布式系统技术和密码学安全技术;第6~8章介绍区块链领域的三个典型开源项目:比特币、以太坊以及超级账本;第9~11章以超级账本 Fabric 项目为例,具体讲解了安装部署、配置管理,以及使用 Fabric CA 进行证书管理的实践经验;第12章重点剖析超级账本 Fabric 项目的核心架构设计;第13章介绍区块链应用开发的相关技巧和示例;第14章介绍区块链服务平台的设计与开发,并讲解应用超级账本 Cello 项目构建服务平台的相关知识。本书覆盖了区块链和分布式账本领域的最新技术,可帮助读者深入理解区块链核心原理和典型设计实现,以及高效地开发基于区块链平台的分布式应用。
作者简介:
杨保华
博士,毕业于清华大学。超级账本(Hyperledger)大中华区技术工作组主席,IBM 大中华区Blockchain技术社区首席顾问,资深研究员。曾主持多个大规模系统平台的架构设计和研发实施,是区块链、云计算、大数据等技术的早期研究者和实践者。他热爱开源技术,曾贡献于OpenStack、OpenDaylight 等开源项目,是超级账本Fabric项目的核心设计和开发者,Cello和Fabric-SDK-Py项目的发起人。个人主页为https://yeasy.github.com。
陈昌
毕业于清华大学。纸贵科技 CTO,曾任 IBM 高级研究员。技术方向包括云计算、区块链、机器学习等。他是区块链技术的早期研究和推动者,是超级账本(Hyperledger)项目的核心开发者。他有丰富的区块链应用实践经验,曾负责金融行业区块链解决方案的架构设计和实施,并主导开发了若干区块链服务平台。
❼ 三. 区块链系统的核心之一-分布式共识机制
拜占庭将军问题(Byzantine Generals Problem),是由莱斯利·兰波特在其同名论文中提出的分布式对等网络通信容错问题。
在分布式计算中,不同的计算机通过通讯交换信息达成共识而按照同一套协作策略行动。但有时候,系统中的成员计算机可能出错而发送错误的信息,用于传递信息的通讯网络也可能导致信息损坏,使得网络中不同的成员关于全体协作的策略得出不同结论,从而破坏系统一致性。这个难题被称为“拜占庭容错”,或者“两军问题”。
拜占庭假设是对现实世界的模型化。拜占庭将军问题被认为是容错性问题中最难的问题类型之一。拜占庭容错协议要求能够解决由于硬件错误、网络拥塞或断开以及遭到恶意攻击,其他计算机和网络可能出现不可预料的行为而带来的各种问题。并且拜占庭容错协议还要满足所要解决的问题要求的规范。
在拜占庭时代有一个墙高壁厚的城邦——拜占庭,高墙之内存放在世人无法想象多的财富。拜占庭被其他10个城邦所环绕,这10个城邦也很富饶,但和拜占庭相比就有天壤之别了。
拜占庭的十个邻居都觊觎它的财富,并希望侵略并占领它。但是,拜占庭的防御非常强大,任何单个城邦的入侵行动都会失败,而入侵者的军队也会被歼灭,使得该城邦自身遭到其他互相觊觎对方的九个城邦的入侵和劫掠。
拜占庭的防御很强,十个城邦中要有一半以上同时进攻才能攻破它。也就是说,如果有六个或者以上的相邻城邦一起进攻,他们就会成功并获得拜占庭的财富。然而,如果其中有一个或者更多城邦背叛了其他城邦,答应一起入侵但在其他城邦进攻的时候又不干了,也就导致只有五支或者更少的城邦的军队在同时进攻,那么所有的进攻城邦的军队都会被歼灭,并随后被其他的(包括背叛他们的那(几)个)城邦所入侵和劫掠。
这是一个由许多不互相信任的城邦构成的一个网络。城邦们必须一起努力以完成共同的使命。而且,各个城邦之间通讯和协调的唯一途径是通过信使骑马在城邦之间传递信息。城邦的决策者们无法聚集在一个地方开个会(所有的城邦的决策者都不互相信任自己的安全会在自己的城堡或者军队范围之外能够得到保障)。
城邦的决策者可以在任意时间以任意频率派出任意数量的信使到任意的对方。每条信息都包含如下的内容:“我城邦将在某一天的某个时间发动进攻,你城邦愿意加入吗?”。如果收信城邦同意了,该城邦就会在原信上附上一份签名了的或盖了图章的(以就是验证了的)回应然送回发信城邦。然后,再把新合并了的信息的拷贝一一发送给其他八个城邦,要求他们也如此这样做。最后的目标是,通过在原始信息链上盖上他们所有十个城邦的决策者的图章,让他们在时间上达成共识。最后的结果是,会有一个盖有十个同意同一时间发动进攻的图章信息包,和一些被抛弃了的包含部分但不是全部图章的信息包。
在这个过程中首先出现了第一个问题,就是如果每个城邦向其他九个城邦派出一名信使,那么就是十个城邦每个派出了九名信使,也就是在任何一个时间又总计90次的传输,并且每个城市分别收到九个信息,可能每一封都写着不同的进攻时间。
在这个过程中还有第二个问题,就是部分城邦会答应超过一个的攻击时间,故意背叛进攻发起人,所以他们将重新广播超过一条(甚至许许多多条)的信息包,由此产生许多甚至无数的足以淹没一切的杂音。
有了以上两个问题,整个网络系统可能迅速变质,并演变成不可信的信息和攻击时间相互矛盾的纠结体。
拜占庭假设是对现实网络世界的一种模型化。在现实网络世界中由于硬件错误、网络拥塞或断开以及遭到恶意攻击,网络可能出现许许多多不可预料的行为。拜占庭容错协议必须处理这些失效,并且还要使这些协议满足所要解决的问题所要求的规范。
对于拜占庭将军问题中本聪的区块链给出了比较圆满的解决方案。也就是比较圆满的解决了上述的两个问题。
拜占庭将军问题的第一个问题从本质上来讲就是时间和空间的障碍导致信息的不准确和不及时。
区块链对于第一个问题的解决方案是利用分布式存储技术和比特流技术(BT技术,一种新型的点对点传输技术,具有节点同时作为客户端和服务器端和没有中心服务器等特点),将整个网络系统内的所有交易信息汇总为一个统一的,分布式存储的,近乎实时同步更新的电子总账。统一的分布式共同账本就解决了空间障碍问题;而近乎同步进行的,实时的,持续的对所有账本备份的更新、对账则解决了时间障碍问题。
这个过程较具体一点的描述大概是将区块链系统内所有的交易活动的记录数据统一于一种标准化的总帐上;区块链系统的每一个节点都会保存一份总帐的备份;所有总帐的备份都是在实时的,持续的更新、对账、以及同步着。区块链系统的每一个节点能在这本总帐里记上添加记录;每一笔新添加的记录都会实时的广播到区块链系统内;所以在每一个节点上的每一份总帐的备份都是几乎同时更新的,并且所有的总帐的备份保持着同步。
拜占庭将军问题的第二个问题从本质上来讲就是关于信息过量问题和信息干扰问题。信息过量和信息干扰问题导致决策延迟,甚至决策系统崩溃而无法决策。
区块链对于第二个问题的解决方案是区块链系统的任何一个节点在发送每一笔新添加的记录时需要附带一条额外的信息。对区块链系统的任何一个节点来说这条额外的信息的获得都是有成本的,并且只能有一个节点可以获得。这样就解决了区块链系统的任何一个节点新添加额外信息时的信息多且乱而无法达成一致的问题。在这里,区块链系统的任何一个节点获得那条附带的额外的信息的过程就是著名的工作量证明机制。
共识机制主要解决区块链系统的数据如何记录和如何保存的问题。工作量证明机制就是要求区块链系统的节点通过做一定难度的工作得出一个结果的过程。
区块链系统中某节点生成了一笔新的交易记录,并且该节点将这笔新的交易记录向全网广播。全网各个节点收到这个交易记录并与其他所有准备打包进区块的交易记录共同组成交易记录列表。在列表内先对所有交易进行两两的哈希计算;再对以获得的哈希值进行哈希计算获得Merkle树和Merkle树的根值;把Merkle树的根值及其他相关字段组装成区块头。
各个节点将区块头的80字节数据加上一个不停的变更的区块头随机数一起进行不停的哈希运算(实际上这是一个双重哈希运算);不停的将哈希运算结果值与当前网络的目标值做对比,直到哈希运算结果值小于目标值,就获得了符合要求的哈希值,工作量证明也就完成了。
分布式的区块链系统是一个动态变化的系统(硬件的运算速度的增长,节点参与网络的程度的变化)。系统的不断变化必然带来系统的算力的不断变化。而算力的变化又会导致通过消耗算力(工作)来获得符合要求的哈希值的速度的不同。最终的结果会是区块链的增长速度会有巨大的不同。这是一个很大的问题。为了解决这个问题,区块链系统自动根据算力的变化对工作难度进行调整。也就是采用移动平均目标的方法来确定,难度控制为每小时生成区块的速度为某一个预定的平均数。
在区块链系统中一个符合要求的哈希值是由N个前导零构成,零的个数取决于网络的难度值。为了使区块的形成时间控制在大约十分钟左右,区块链系统采用了固定工作难度的难度算法。难度值每2016个区块调整一次零的个数。
新的难度值是根据前2015个区块(理论上应该是2016个区块,由于当初程序编写时的失误造成了用2015而不是2016)的出块时间来计算。
难度 = 目标值 * 前2015个区块生成所用的时间 / 1209600 (两周的秒钟数)
这样通过规定的算法,区块链系统就保证所有节点计算出的难度值都一致,区块的形成时间大约一致在十分钟左右。
(1)结果不可控制。其依赖机器进行哈希函数的运算来获得结果;计算结果是一个随机数;没有人能直接控制计算的结果。
(2)计算具有对称性。就是结果的获得和结果的验收需要的工作量是不同的。计算出结果所需要的工作量远远大于验收结果所需要的工作量。
(3)计算的难度自动控制。为了使区块的形成时间控制在大约十分钟左右,区块链系统自动控制了每一个符合要求的哈希获得为大约在十分钟左右。
第一,方法简单易行。
第二,系统达成共识容易,节点间不需要太多的信息交换。
第三,系统比较牢固可靠,任何破坏系统的企图都需要投入大到得不偿失的成本。
第一,消耗大量的算力,也就是浪费能源和其他资源。
第二,区块的确认时间比较长,并且难以缩短。
第三,新创立的区块链非常容易受到算力攻击。
第四,容易产生区块链分叉,稳定的区块链需要多个确认,并且这种状况可能不断持续下去。
第五,算力的逐渐集中导致与去中心化的系统设计基础的冲突日益明显。
权益证明机制是一种工作量证明机制的替代方法,试图解决工作量计算浪费的问题.目前其成功的应用是点点币区块链系统。
权益证明不要求区块链系统的节点完成一定数量的计算工作,而是要求区块链系统的节点对某些数量的钱展示所有权。
权益证明机制首先应用于点点币区块链系统中。
点点币区块链系统的区块生成时,节点需要构造一个“钱币权益”交易,即把自己的一些钱币和预先设定的奖励发给自己。进行哈希计算时,哈希值的计算只同交易输入、一些附加的固定数据以及当前时间(是一个表示自1970年1月1日距离当前时刻的秒数的正数)有关。然后,根据类似工作量证明的要求来检查这个哈希值是否正确。
点点币区块链系统的权益证明机制除了设定了哈希计算难度与交易输入的“币龄”成反比外,其与工作量证明机制非常类似。其中,币龄的定义为交易输入大小和它存在时间的乘积。权益证明机制中哈希值只和时间和固定的数据有关,因而没有办法通过多完成工作来快速获取它。
每个点点币区块链系统的交易的输出都有一定的几率来产生有效的正比于币龄和交易货币数量的工作。
第一,缩短了共识达成的时间。
第二,不再需要大量消耗能源。
第一,还是需要哈希计算。
第二,所有的确认都只是一个概率上的表达,而不是一个确定性的事情,有可能受到其他攻击影响。
授权股份证明机制类似于权益证明机制,是比特股BitShares采用的区块链公识算法。授权股份证明机制是民主选举和轮流执政相结合方式来确定区块的产生。
授权股份证明机制是先由节点选举若干代理人,由代理人验证和记账。其他方面和权益证明机制相似。
每个节点按其持股比例拥有相应的影响力,51%节点投票的结果将是不可逆且有约束力的。为达到及时而高效的方法达到51%批准的目标。每个节点可以将其投票权授予一名节点。获票数最多的前100位节点按既定时间表轮流产生区块。每名节点分配到一个时间段来生产区块。
所有的节点将收到等同于一个平均水平的区块所含交易费的10%作为报酬。
第一,大幅缩小参与验证和记账节点的数量,
第二,可以快速实现共识验证。
主要缺点就是仍然无法摆脱对代币的依赖。
在分布式计算上,不同的计算机透过讯息交换,尝试达成共识;但有时候,系统上协调计算或成员计算机可能因系统错误并交换错的讯息,导致影响最终的系统一致性。
拜占庭将军问题就根据错误计算机的数量,寻找可能的解决办法,这无法找到一个绝对的答案,但只可以用来验证一个机制的有效程度。
而拜占庭问题的可能解决方法为:
在 N ≥ 3F + 1 的情况下一致性是可能解决。其中,N为计算机总数,F为有问题计算机总数。信息在计算机间互相交换后,各计算机列出所有得到的信息,以大多数的结果作为解决办法。
第一,系统运转可以摆脱对代币的依赖,共识各节点由业务的参与方或者监管方组成,安全性与稳定性由业务相关方保证。
第二,共识的时延大约在2到5秒钟。
第三,共识效率高,可满足高频交易量的需求。
第一,当有1/3或以上记账人停止工作后,系统将无法提供服务;
第二,当有1/3或以上记账人联合作恶,可能系统会出现会留下密码学证据的分叉。
小蚁改良了实用拜占庭容错机制。该机制是由权益来选出记账人,然后记账人之间通过拜占庭容错算法来达成共识。
此算法在PBFT基础上进行了以下改进:
第一,将C/S架构的请求响应模式,改进为适合P2P网络的对等节点模式;
第二,将静态的共识参与节点改进为可动态进入、退出的动态共识参与节点;
第三,为共识参与节点的产生设计了一套基于持有权益比例的投票机制,通过投票决定共识参与节点(记账节点);
第四,在区块链中引入数字证书,解决了投票中对记账节点真实身份的认证问题。
第一,专业化的记账人;
第二,可以容忍任何类型的错误;
第三,记账由多人协同完成,每一个区块都有最终性,不会分产生区块链分叉;
第四,算法的可靠性有严格的数学证明来保证;
第一,当有1/3或以上记账人停止工作后,区块链系统将无法提供服务;
第二,当有1/3或以上记账人联合作恶,且其它所有的记账人被恰好分割为两个网络孤岛时,恶意记账人可以使区块链系统出现分叉,但是会留下密码学证据;
瑞波共识机制是全体节点选取出特殊节点组成特殊节点列表,由特殊节点列表内的节点达成共识。
初始特殊节点列表就像一个俱乐部,要接纳一个新成员,必须由51%的该俱乐部会员投票通过。共识遵循这核心成员的51%权力,外部人员则没有影响力。波共识机制将股东们与其投票权隔开,并因此比其他系统更中心化。
瑞波共识机制参与共识形成的只有特殊节点,大大的减少了共识形成的时间。在实践中,瑞波区块链系统达成共识需要3-6秒钟,远远快于比特币区块链系统的10分钟。同时瑞波区块链系统对并发交易的处理达到每秒数万笔,而比特币区块链系统只有每秒7笔。
瑞波共识机制处理节点意见分歧的方式也是不同的。瑞波的信任节点对于新区块的创造进行协商的时间是区块链更新前。先协商,达成共识后再对区块链进行更新。
由于瑞波共识机制的共识是由特殊节点达成的,普通节点并不需要维护一个完整的历史账本。各个节点可以根据自己的业务需要选择同步同步完整的历史账本或者任意最近几步的账本。这也意味着对存储空间和网络流量需求的减少。
瑞波共识机制取消了挖坑的发行货币机制,采用了原生货币(1000亿枚)的方式发币,从而大量的避免了挖矿的天量能耗。
❽ 区块链+供应链金融解决方案是什么
自区块链在国内掀起热潮以来,整个行业都在不断地探索各类落地场景,真可谓区块链如此多娇,引得无数创业者竞折腰。那么区块链在供应链金融这个赛道的优势何在?传统的模式存在哪些痛点?区块链能够创造出哪些新的商业模式来解决这些难题?区块链创业公司们又当如何切入这个领域?
全球著名债券评级机构穆迪曾给出过127个区块链案例,从积分到交易清算,从文件存证到供应链管理,从跨境支付到供应链金融,各种应用层出不穷。
而在如此众多的应用当中,又属供应链金融领域备受瞩目,商业化落地的进展较快。
这是因为首先,供应链金融这个场景具有万亿级别的市场规模,天花板足够高,其次,这个场景天然需要多方合作,却又没有一个传统中心化的机构在治理,需要用区块链来建立信任,同时,在技术上这个场景并不需要高并发,目前的区块链技术能够满足。
1、供应链金融是万亿级别的市场
供应链金融(Supply ChainFinance):是指将供应链上的核心企业以及与其相关的上下游企业看作一个整体,以核心企业为依托,以真实贸易为前提,运用自偿性贸易融资的方式,对供应链上下游企业提供的综合性金融产品和服务。
根据融资担保品的不同,金融机构将供应链金融分为在应收账款类、预付类和存货类融资,其中应收账款类的规模尤为巨大。
国家统计局数据显示,2016年末,我国规模以上工业企业应收账款12.6万亿元,同比增长10%,这其中产生了企业巨大的融资需求。而相比于巨大的应收账款,2015年我国年商业保理量仅在2000亿元左右,可以看出,还有大量供应链需求没有被满足,因而供应链金融行业发展空间巨大。
2、区块链如何解决供应链金融的痛点
痛点1:供应链上的中小企业融资难,成本高
由于银行依赖的是核心企业的控货能力和调节销售能力,出于风控的考虑,银行仅愿意对核心企业有直接应付账款义务的上游供应商(限于一级供应商)提供保理业务,或对其下游经销商(一级供应商),提供预付款或者存货融资。
这就导致了有巨大融资需求的二级、三级等供应商/经销商的需求得不到满足,供应链金融的业务量受到限制,而中小企业得不到及时的融资易导致产品质量问题,会伤害整个供应链体系。
区块链解决方案:
我们在区块链上发行,运行一种数字票据,可以在公开透明、多方见证的情况下进行随意的拆分和转移。
这种模式相当于把整个商业体系中的信用将变得可传导、可追溯,为大量原本无法融资的中小企业提供了融资机会,极大地提高票据的流转效率和灵活性,降低中小企业的资金成本。
据统计,过去传统的供应链金融公司大约仅能为15%的供应链上的供应商们(中小企业)提供融资服务,而采用区块链技术以后,85%的供应商们都能享受到融资便利。
痛点2:作为供应链金融的主要融资工具,现阶段的商业汇票、银行汇票使用场景受限,转让难度较大。
商业汇票的使用受制于企业的信誉,银行汇票贴现的到账时间难以把控。同时,如果要把这些债券进行转让,难度也不小。
因为在实际金融操作中,银行非常关注应收账款债权“转让通知”的法律效应,如果核心企业无法签回,银行不会愿意授信。据了解,银行对于签署这个债权“转让通知”的法律效应很谨慎,甚至要求核心企业的法人代表去银行当面签署,显然这种方式操作难度是极大的。
区块链解决方案:
银行与核心企业之间可以打造一个联盟链,提供给供应链上的所有成员企业使用,利用区块链多方签名、不可篡改的特点,使得债权转让得到多方共识,降低操作难度。
当然,系统设计要能达到债券转让的法律通知效果。同时,银行还可以追溯每个节点的交易,勾画出可视性的交易流程图。
痛点3:供应链金融平台/核心企业系统难以自证清白,导致资金端风控成本居高不下
目前的供应链金融业务中,银行或其他资金端除了担心企业的还款能力和还款意愿以外,也很关心交易信息本身的真实性,而交易信息是由核心企业的ERP系统所记录的。
虽然ERP篡改难度大,但也非绝对可信,银行依然担心核心企业和供应商/经销商勾结修改信息,因而需要投入人力物力去验证交易的真伪,这就增加了额外的风控成本。
区块链解决方案:
区块链作为“信任的机器”,具有可溯源、共识和去中心化的特性,且区块链上的数据都带有时间戳,即使某个节点的数据被修改,也无法只手遮天,因而区块链能够提供绝对可信的环境,减少资金端的风控成本,解决银行对于被信息篡改的疑虑。
3、区块链公司该如何切入供应链金融
在市场选择上,我们认为区块链初创公司应选择天花板足够高的细分领域,比如家电、汽车、零售、服装、药品行业等。这些行业一方面市场广阔,另一方面其供应链管理的基础设施较完善,上区块链的先期成本较小。
我们认为区块链公司切入供应链金融一共有两种模式。
第一种是直接与核心企业/平台合作,为其提供区块链底层解决方案,在积累足够多数据之后,通过搭建联盟链,对接资金方提供金融服务。(联盟链模式)
鉴于区块链本身不能解决风控的问题,现阶段企业级的风控还是需要围绕着强势的核心企业,同时,获得核心企业的支持还可以有效解决获客的问题,因为一家大型核心企业一般都会有上千家的各类供应商。
目前,国内的区块链公司从核心企业切入的包括布比、网录科技等,布比推出了一个专为供应链金融打造的联盟链“布诺”,将银行、核心企业、保理公司等都链接起来,布诺立足广州深圳,辐射东南区业务,深挖供应链金融领域,此前与壹钢网签署了战略合作协议。
第二种模式是从提供供应链管理服务入手,比如溯源、追踪、可视化等,将信息流、物流和资金流整合到一起,在此基础之上从事金融服务。(私有链模式)
这种模式相当于用区块链搭建起了一个应用场景。就如同当年的支付宝,如果马云当年直接就做支付宝,很难做起来,因为没有应用场景,所以先做了为实体经济服务的淘宝。有了淘宝以后,支付宝作为中心化信任场景出现,将其他应用嫁接在支付宝上,才成就了蚂蚁金服。
目前在国内的区块链公司中,采取供应链服务模式切入的包括BITSE,食物优等。
比如VeChain提供一种防伪溯源的方法,通过给每个商品植入一个NFC芯片,将商品注册到区块链上,使其拥有一个数字身份,再通过共同维护的账本来记录这个数字身份的所有信息,达到验证效果。目前Vechain产品已经对接了10多家行业标杆客户,数百万个ID运行在链上。
4、三个步骤打造供应链金融交易所
从实现路径来看,区块链在供应链金融领域的应用可以通过三个步骤来实现。
作为前提,我们需要先打造一个区块链+供应链金融的联盟,联盟的参与者包括供应链金融平台,核心企业、专业的金融中介机构、资金方、保理机构等。
每个参与者都需要承担相应的义务,比如平台负责提供供应链信息,客户信息这些类似水电的基础服务,而核心企业了解行业状况,对供应链上的企业具有掌控力,负责风险控制。
专业的金融中介机构可以对平台信息进行整合分析,提供定制化的供应链金融产品,比如个性化的区块链电子票据。资金方包括银行、互联网金融机构等负责对接相应风险偏好的客户。
联盟链搭建好之后,就可以开始三步走战略。
第一步,数据上链,将供应链联盟里的数据放到链上,利用区块链的特性使其不可篡改,并提供数据的确权,溯源等服务。
第二步,资产数字化,把仓单、合同、以及可代表融资需求的区块链票据都变成数字资产,且具有唯一、不可篡改、不可复制等特点。
第三步,数字资产的交易,供应链金融平台将转变成一个金融资产交易所,将非标的企业贷款需求转变成标准化的金融产品,进行代币化,对接投融资需求,进行价值交易。
最终,区块链技术将能有效地增强供应链金融资产的流动性,调动新型的融资工具和风控体系帮助覆盖中小企业融资的长尾市场,催生供应链金融即服务。
❾ 区块链到底解决了什么问题
艺术行业
Ascribe让艺术家们可以在使用区块链技术来声明所有权,发行可编号,限量版的作品,可以针对任何类型艺术品的数字形式。它甚至还包括了一个交易市场,艺术家们可以通过他们的网站进行买卖,而无需任何中介服务。
法律行业
BitProof是近些年来涌现的众多文档时间戳应用中最为先进的,将会让传统的公证方式成为过去。相对于包括Blocksgin和OriginStaemp这样的免费版本,BitProof提供更多的服务,包括有一个是针对知识产权的。有趣的是,BitProof最近和一家旧金山的IT学校进行合作,把他们学生的学历证书都放在区块链上,完全重新定义了如何让文凭和学生证书的处理和使用方式。
开发行业
Colu是首个允许其它企业发行数字资产的企业,他们可以将各种资产来“代币化”让许多人印象深刻。尽管免费的比特币钱包Counerparty也允许发行简单的代币,并且在其他钱包持有者之间进行交易,Colu的代币可以设置有各种状态和类型,能够脱离或者重新回到这个系统,并且当在区块链上存储数据过大的时候能够将数据存储在BitTorrent的网络上。
房地产行业
他们计划能够让整个产业链流程变得更加现代化,解决每个人在参与房地产面临的各种问题,包括命名过程,土地登记,代理中介等。
金融角度看待区块链
货币的本质:货币只是一种广泛价值共识,本身不具有价值沉淀。
资产与货币的关系:货币描述资产。
什么是数字资产:资产数字化,可细分,可交易,价格由供需市场决定,而不是价值中介——货币决定。
物联网
应用场景分析 [7]
一种可能的应用场景为:通过 Transaction 产生对应的行为,为每一个设备分配地址 Address,给该地址注入一定的费用,可以执行相关动作,从而达到物联网的应用。类似于:PM2.5监测点数据获取,服务器 租赁,网络摄像头 数据调用,DNS服务器 等。
另外,随着物联网设备的增多,Edge 计算需求的增强,大量设备之间需要通过分布式自组织的管理模式,并且对容错性要求很高。区块链自身分布式和抗攻击的特点可以很好地试用到这一场景中。
IBM [7]
IBM 在物联网领域已经持续投入了几十年的研发,正在探索使用区块链技术来降低物联网应用的成本。
2015 年初,IBM 与三星宣布合作研发 ADEPT 系统。
物流供应链 [7]
供应链行业往往涉及到诸多实体,包括物流、资金流、信息流等,这些实体之间存在大量复杂的协作和沟通。传统模式下,不同实体各自保存各自的供应链信息,严重缺乏透明度,造成了较高的时间成本和金钱成本,而且一旦出现问题(冒领、货物假冒等)难以追查和处理。
通过区块链各方可以获得一个透明可靠的统一信息平台,可以实时查看状态,降低物流成本,追溯物品的生产和运送整个过程,从而提高供应链管理的效率。当发生纠纷时,举证和追查也变得更加清晰和容易。
该领域被认为是区块链一个很有前景的应用方向。
例如运送方通过扫描二维码来证明货物到达指定区域,并自动收取提前约定的费用,可以参考 区块链如何变革供应链金融 和 区块链给供应链带来透明。
Skuchain 创建基于区块链的新型供应链解决方案,实现商品流与资金流的同步,同时缓解假货问题。
公共网络服务 [7]
现有的互联网能正常运行,离不开很多近乎免费的网络服务,例如域名服务(DNS)。任何人都可以免费查询到域名,没有 DNS,各种网站基本就无法访问了。因此,对于网络系统来说,类似的基础服务必须要能做到安全可靠,并且低成本。
区块链技术恰好具备这些特点,基于区块链打造的 DNS 系统,将不再会出现各种错误的查询结果,并且可以稳定可靠的提供服务。
保险行业
在过去两年里,说起科技领域最炙手可热话题的必然离不开区块链技术。这一脱胎于比特币的底层技术,以7年多的稳定运行证明了其高度安全可靠的架构和算法设计,同时凭借分布式账本和智能合约等创新性的技术,为多个行业的产业升级打开了巨大的想象空间。甚至有业内专家预言区块链技术将掀起第二次互联网革命。
金融行业历来对先进技术最为敏感。传统的银行和证券业巨头从2014年就纷纷投身于如火如荼的区块链创业投资中,两年内全球投资总额高达 10亿美金,其中更不乏像DAH的6千万美元、Blockstream的5千万美元这样的巨额A轮融资。除了资金投入,各大公司更是亲自参与和推动具体的业务应用当中:例如美国纳斯达克证券交易所推出的Linq区块链股权交易所已经与2015年底开始发行测试;而 全球43家跨国银行结成的R3 CEV联盟也是一直在测试和改进银行间的跨行清算联盟链,动作之快,参与度之高都是前所未有。
保险行业虽然对于区块链技术的参与相对比较保守,但在学术领域一直在进行积极的探索和研究。2014年底,由英国著名的Z/YEN Group咨询集团发起的欧美保险业论坛推出的长达50页的《终身之链》专项研究报告从多个方面讨论的区块链将会给保险业带来的创新和变革。
在研究区块链技术的同时,和国内众多保险行业的专家学者交流,从业务流程、公司管理等多个角度深入探讨了区块链在保险业务的具体落脚点,现笔者与读者分享对于信用风险管理的一些思考。