区块链智能合约的过程包括,区块链智能合约的过程是什么区块链智能合约的过程

zhousys 区块链知识 2023-11-23 06:41 50

摘要:区块链智能合约的过程㈠如何理解区块链的智能合约智能合约”(smartcontract)这个术语至少可以追溯到1995年,是由多产的跨领域法律学者尼克·萨博(...

区块链智能合约的过程

㈠ 如何理解区块链的智能合约

智能合约”(smart contract)这个术语至少可以追溯到1995年,是由多产的跨领域法律学者尼克·萨博(Nick Szabo)提出来的。他在发表在自己的网站的几篇文章中提到了智能合约的理念。他的定义如下:

“一个智能合约是一套以数字形式定义的承诺(promises),包括合约参与方可以在上面执行这些承诺的协议。”

让我们更加详细地探讨他的定义的意思。

承诺

一套承诺指的是合约参与方同意的(经常是相互的)权利和义务。这些承诺定义了合约的本质和目的。以一个销售合约为典型例子。卖家承诺发送货物,买家承诺支付合理的货款。

数字形式

数字形式意味着合约不得不写入计算机可读的代码中。这是必须的,因为只要参与方达成协定,智能合约建立的权利和义务,是由一台计算机或者计算机网络执行的。

更进一步地说明:

(1)达成协定

智能合约的参与方什么时候达成协定呢?答案取决于特定的智能合约实施。一般而言,当参与方通过在合约宿主平台上安装合约,致力于合约的执行时,合约就被发现了。

(2)合约执行

“执行”的真正意思也依赖于实施。一般而言,执行意味着通过技术手段积极实施。

(3)计算机可读的代码

另外,合约需要的特定“数字形式”非常依赖于参与方同意使用的协议。

协议

协议是技术实现(technical implementation),在这个基础上,合约承诺被实现,或者合约承诺实现被记录下来。选择哪个协议取决于许多因素,最重要的因素是在合约履行期间,被交易资产的本质。

再次以销售合约为例。假设,参与方同意货款以比特币支付。选择的协议很明显将会是比特币协议,在此协议上,智能合约被实施。因此,合约必须要用到的“数字形式”就是比特币脚本语言。比特币脚本语言是一种非图灵完备的、命令式的、基于栈的编程语言,类似于Forth。

智能合约


链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

㈡ 了解区块链,什么是智能合约

智能合约是一种不需要公证员或公职人员等第三方来验证、促进或执行的合约!

从字面上看意味着你可以与任何第三方进行快速、可靠和信任的交易,不受普通合同的限制

医疗保健

谁可以访问我的病人数据?我的数字病人档案安全吗?以及其他许多问题都是从拥有数字病人档案中产生的。正如我们了解到的,如果只有有限的几个人需要在有限的时间内访问,你的档案始终带在身边,只有当你允许医生访问时才有权限。

高度监管,比如药品储存和配送。


㈢ 区块链+智能合约如何结合

着区块链技术的突破,智能合约获得了重生的机会,基于区块链技术的智能合约不仅可以发挥智能合约在成本效率方面的优势,而且可以避免恶意行为对合约正常执行的干扰。将智能合约以数字化的形式写入区块链中,由区块链技术的特性保障存储、读取、执行整个过程透明可跟踪、不可攥改;同时,强安全共识机制,无需三方介入:由区块链自带的共识算法构建出一套状态机系统,使得智能合约能够高效地运行。

㈣ 区块链之联盟链(三) 认识Fabric

Fabric 是超级账本联盟推出的核心区块链框架,它适合在复杂的企业内和企业间搭建联盟链。根据超级账本联盟的目标, Fabric 被建设为一个模块化的、支持可插拔组件的基础联盟链框架。;

与以太坊系的Quorum不同,Fabric从一开始就只考虑企业间的应用。其独有的channel概念,将企业根据业务目的不同以不同的子网连接起来, 每一个子网对应一个channel,而每个channel有自己独立的区块链。而Quorum很显然是只有一个公网(所有企业节点都加入进去),企业与企业间的私有业务是通过Private Manager 完成的。

理解channel的最简单方法就是,将它类比为一个消息服务提供的Topic,实际上Fabic最早就是基于Kafka 的分布式消息服务来实现。

       在Fabric网络中,一个企业可以有一个或多个节点加入整个联盟链;一个企业可以加入1个或者多个Channel(子网);  一个节点可以加入1个或者多个channel。每个channel构成一个子网,所以Fabric 是 一种由子网组成的网络。

那么Fabric是怎么实现智能合约的执行和完成业务上链(将事务结果记录在区块链里)的呢?

与其它框架不同, Fabric 将整个过程分成了三个阶段:

业务背书阶段 : 客户的请求发送的背书节点,通过智能合约完成业务的计算(但不更新状态),并完成背书;将背书结果返回个客户端。

业务的排序阶段 : 客户端将背书结果通过Channel被发送到排序节点(orderer),在排序节点完成事务的排序,并打包到block里,最后下发给所有连接到channel的节点。

业务验证并写入账本阶段 : 通过Gossip 网络,所有Channel的节点都会接收到新的block,节点会验证block中的每一个事务,确定是否有效:有效地将会跟新world state,无效的将会标志为“无效”,不会更新World state,但整个block会被完整的加入到帐本中(包括无效的事务)。

根据以上的描述,Fabric 节点实际可以分为  ,普通节点和Order节点:

 Peer, 普通节点, 完成背书(包括只能合约的执行)和验证.

orderer,  排序节点,完成排序。

加入orderer节点的Fabric网络可以被描述如下:

每一个Channel,都定义了所有属于channel的节点,但是并不需要所有节点都连接到Orderer 节点(节点间可以通过gossip 协议通讯来传播私有数据或事务).

       在区块链中,共识是区块链的基础。与公有链不同,联盟链的共识要求所有加入账本的事务是确定的、最终的,也就是不可以有分叉,区块与区块间的顺序是一定的,只存在唯一条链。在Fabric 中,这个客观需求正是由排序实现的,所有的事务将被提交给orderer节点获得确定的顺序,并最终打包成block进入帐本。 Fabric 从1.4.1开始支持基于Raft实现排序服务,  可以认为基于Raft实现共识。

基于RAFT的排序服务相对于早期的Kafka 具有更好的分布性,配置更加简单,是联盟链里常用的一个常用的达成共识的算法,Quorum就 默认使用RAFT作为共识层。简单的说,RAFT是一个leader和follower的模式, 所有加入RAFT网络的节点,任意时候都有一个leader,  只有这个leader有权决定事务的顺序,并打包成Block,其它节点只能作为follower提交事务和同步block。

基于FAFT网络,每个企业可以有一个或多个节点参与到Orderer中去。在Frabric中企业间的网络连接可以变化成如下形式:

       区块链的使用用户在以太网中被称作EOA(External of Account), EOA的载体是钱包。我们沿用这个概念,来看看Fabric是如何实现用户和发起事务的。Fabric中EOA是一个CA中心发布的certificate(x.509),一个Certificate代表一个Identity(这与以太坊还是有很大区别的, 以太坊中一个EOA其实是一个hash地址),EOA能够参与的channel以及被授权的操作是有channel的MSP( Membership Service  Provider)决定的(如下图)。

注:certificate 是一种密码学上验证身份的通用做法; certificate包含了个人的信息,公钥以及发布这个certificate的CA的签名。验证方只需要拥有这个CA的证书(包含CA的公钥),就可以验证这个签名是否正确,certificate的内容是否有篡改。简单的说,通过CA和Certificate,我们可以获得一个可验证的的身份和信任链。

      如上图,fabric中通要使用Wallet作为EOA的载体,一个Wallet中可以包含多个Identity(x.509 certificate)。 Identity 通过 CA提供的信任链来验证正确性。

  验证了身份之后, Fabric 通过MSP在区块链网络中解决该身份是否代表组织的成员和在组织内具有什么角色。例如,channel首先会验证当前用户Identity是否是有效地身份,然后通过MSP查看其所处的企业和具有的角色,最终确定该用户是否有权执行操作。

可以说,Fabric的访问控制是通过MSP来完成的。在每一个需要访问控制的地方都需要定义一个MSP。  例如,每个channel都定义一个MSP,这个MSP规定了在channel范围内资源的访问权限。 MSP 是Fabric里一个晦涩难懂的概念,也是其赋予企业间安全访问的基础。

前文提到, Fabric 将业务处理和上网分成了三个部分, 背书,排序,验证后加入账本。

其中背书是Fabric执行智能合约的阶段。以太坊中,智能合约是在EVM中执行的,有多种语言支持。 在Fabric,智能合约被称为chaincode: 一个chaincode 可以理解为是智能合约的容器,可以包含一个或多个智能合约, 不用于EVM, chaincode是在 JVM 或NodeJS中执行。

客户应用程序通过智能合约来访问账本,每一个可访问的智能合约都被安装在客户端可以访问的节点上,并被定义在channel里。(有只能合约的节点被称为背书节点,没有只能合约的节点被称未提交节点,提交节点只维护账本)

客户应用提交一个交易请求, 请求到达背书节点, 背书节点首先会验证客户的签名,确保客户的身份有权执行本次交易,接着执行交易提及的智能合约(chaincode),并生成一个背书响应(或者叫做交易提案,tran-proposal)。这个背书响应中通常包含World state 的读集合,写集合, 以及节点对本次交易的签名。这里与以太坊系联盟链最主要的不同是: 背书阶段只模拟交易,并不真正更新交易结果。 而真正更新交易在第三阶段完成。背书节点最后将生成的背书响应fanhui给客户端, 智能合约部分的执行就结束了。

通常一个交易的执行需要多方的签名,所以客户端需要将一个交易发送给多个背书节点,这些背书节点的选择需要满足背书策略的要求。

下图是一个包含有客户、背书节点,提交节点的网络示意图。

根据Fabric官方的参考文档,客户交易的正果过程可使用下图描述。

如上图,从1到3,为背书阶段,4为排序阶段,4.1,4,2, 5为验证提交阶段。 参考 Frabic的节点 概念,可以了解更多在交易细节的概念。  

总的来看, Fabric 更专注于企业间,通过上文,可以让大家对Fabric的基本构成与概念有一个总的了解。  Fabric本身并不神秘,都是使用的现有的企业间的技术。要更好的了解,建议参考阅读分布式消息系统和企业的安全基础设施(CA相关)的支持。与以太坊系联盟链实现比较,  Fabric 的子网更概念对于复杂企业间应用适应更强,但是其复杂的安全考量,使得运营成本很高,另外,Fabric 使用Certificate做为用户身份,有很大的局限性,在新的2.0里,Fabric对于此处将有所改变。

下一篇,我们将来看看Sawtooth , 由Inter 提供的区块链框架。

区块链之联盟链(一) 认识以太坊

区块链之联盟链(二) 认识Quotum

区块链之联盟链(三) 认识Fabric

区块链之联盟链(四) 认识Sawtooth

㈤ 区块链的核心技术:共识机制&智能合约

不论你是否接受,未来终将改变。

区块链技术给数字经济时代带来了巨变的曙光。

这种巨变在互联网近50年的历史上曾发生过两次。第一次巨变是全球性的联

网……第二次巨变是全球性的应用……第三次巨变正在蕴酿。

————摘自《腾讯区块链方案白皮书》 

当第一次读到这段时,完全不敢想象这是一家世界级企业对一项新技术的评价,

瞬间引起了我的兴趣。“巨变”是什么含义?就是说完全有可能颠覆我们现有的

经济结构和认知,彻底改变我们的生活方式。

一种从2009年才诞生的比特币技术中 抽象而来的block chain(区块链)技术,

居然获得了这么高的评价,这难道不是很神奇的一件事么?不管这件事会不会发

生,已经令人非常激动了,我们正在迎接一项变革并且可能参与其中,不是任何

时代的人都有这种机会,何其幸运!

不论你是否接受,未来终将改变。全球众多经济学家、企业家、国家政要都在推

崇区块链,声称区块链技术将重塑商业、货币和世界,将颠覆互联网、银行、证

券、保险、物流、电力、制造、会计税收、法律服务、文化创业、医药卫生等众

多行业。

虽然说到“区块链”,大家都会提到“去中心化”,也举了很多形象的例子。但

是我是一个较真的人,希望能够找到大家做出这种判断,背后的逻辑到底是什

么?就需要搞懂一切推断背后的本质,就需要了解区块链的核心技术逻辑。

阅读了一些书籍和资料之后,抛开“比特币”不说,要了解区块链,有两个核心

名词:共识机制、智能合约。

共识机制是区块链技术的核心,要搞清楚”共识机制“,就不得不提著名的“拜

占庭将军问题”,拜占庭将军问题由莱斯利·兰伯特提出的点对点通信中的基本

问题,主要是用于分析在分布式节点传输信息时如何保持数据的一致,即共识这

个问题。

拜占庭将军问题

一组拜占庭将军分别各率领一支军队共同围困一座城市。为了简化问题,将各支

军队的行动策略限定为进攻或撤离两种。

因为部分军队进攻部分军队撤离可能会造成灾难性后果,因此各位将军必须通过

投票来达成一致策略,即所有军队一起进攻或所有军队一起撤离。因为各位将军

分处城市不同方向,他们只能通过信使互相联系。

在投票过程中每位将军都将自己投票给进攻还是撤退的信息通过信使分别通知其

他所有将军,这样一来每位将军根据自己的投票和其他所有将军送来的信息就可

以知道共同的投票结果而决定行动策略。

系统的问题在于,将军中可能出现叛徒,他们不仅可能向较为糟糕的策略投票,

还可能选择性地发送投票信息。这样各支军队的一致协同就遭到了破坏。由于将

军之间需要通过信使通讯,叛变将军可能通过伪造信件来以其他将军的身份发送

假投票。而即使在保证所有将军忠诚的情况下,也不能排除信使被敌人截杀,甚

至被敌人间谍替换等情况。因此很难通过保证人员可靠性及通讯可靠性来解决问

题。

假始那些忠诚的将军仍然能通过多数决来决定他们的战略,便称达到了拜占庭容

错。

拜占庭将军问题被认为是容错性问题中最难的问题类型之一。在一个有n个节点的

系统中,每一个节点都有一个输入的值,其中一些节点具有故障,甚至是恶意

的。

在分布式计算中,不同的计算机通过通讯交换信息达成共识而按照同一套协作策

略行动。但有时候,系统中的成员计算机可能出错而发送错误的信息,用于传递

信息的通讯网络也可能导致信息损坏,使得网络中不同的成员关于全体协作的策

略得出不同结论,从而破坏系统一致性。

但是中本聪在设计比特币系统时应用的“工作量证明链”(PoW)模型很好的解决

了共识问题,至于什么是“PoW”,感兴趣的可以研究下。

智能合约是一套以数字形式定义的承诺(promises) ,包括合约参与方可以在

上面执行这些承诺的协议。一个合约就是存在区块链里的程序。合约的参与双方

将达成的协议提前安装到区块链系统中。在双方的约定完成后,开始执行合约,

不能修改。至于合约执行所需要的“燃料”,也就是手续费,也需要提前支付。

智能合约可以解决日常生活中常见的违约问题,如果应用到各行业中,可以避免

违约的信用问题。

在区块链出现之前,商业领域的信任关系通常要依赖于正直、诚信的个人、中介

机构或其他组织才能建立起来。在区块链这个新兴的领域中,信任关系的建立是

基于网络,甚至是网络上的某个对象。由区块链驱动的智能合约将会要求双方遵

守他们的承诺。

在区块链体系中,共识机制和智能合约,保证了数据的真实性和合约执行力,实

现“去中心化”。当然还有很多技术层面的东西没有说到,感兴趣的可以深入了

解下。

虽然大部分人对于区块链的认知还停留在比特币、各种代币上,也就是对金融行

业的变革。但是了解区块链核心逻辑后,结合自己所在的行业“区块链 +”,区

块链的各行业的应用刚进前半场,相信都会想到很多好的创新方向。

㈥ 一文读懂混合型智能合约:如何结合链上与链下计算资源


混合型智能合约包含链上运行的代码和链下数据、计算资源,预言机可为其提供喂价、储备金证明、可扩展计算等功能。

撰文:Chainlink

混合型智能合约包含区块链上运行的代码以及区块链下的数据和计算资源,这些资源由去中心化预言机网络传输至链上。混合型智能合约可以协调复杂的经济和 社会 活动,具有区块链防篡改的特质,并且可以安全地接入链下预言机服务,实现各种创新功能,如可扩展性、保密性、公允排序以及接入任何链下数据源或系统。

本文将明确定义混合型智能合约在区块链信任模式中的作用,并阐述 Chainlink 预言机为混合型智能合约提供的各种去中心化服务,以及这一发展将如何催生出新一代的混合型智能合约应用。这些连通了链下资源的混合型智能合约将在未来席卷几乎所有主流行业,并改变整个 社会 的合作方式。

预言机如何扩展区块链上的合作方式

区块链在本质上是促进可信合作的计算基础架构,这是它的关键功能。参与者有了信任,才会坚定地认为合作关系是可靠、真实且有效的。在合作中建立信任最常见的方式就是签署合约。合约定义了各方的法律和商业义务,以及他们行为会受到的奖励和惩罚。然而,如今的合约义务执行机制却漏洞百出。甚至一些情况下,某个参与者会拥有绝对优势,比如操纵和影响合约执行机制,比对手方得知更多消息,或拥有更多时间和资本延长仲裁过程。因此,现在的合约系统变成了:你必须相信对手方的品牌背书,才能信任你们之间的合作关系是牢靠的。

区块链技术的出现使合作从品牌背书转向了基于算法的信任(math-based trust)。合约的存放、执行和托管都转移到了去中心化网络中运行的代码逻辑中,个人完全无法干预和篡改。区块链就像一台没有联网的计算机,可信度非常高,因为它是一个封闭的环境,并且只能实现几种容易执行的功能,比如在一个封闭账本中的多个地址之间转移通证。这种设置是有意而为。虽然区块链的封闭性和功能的单一性为它带来了防篡改性和高度的确定性(这也是区块链最有价值的地方),但同时也排除了任何需要接入链下数据、计算或功能的合作方式。

由于用户希望扩展区块链上可行的合作方式,因此预言机以及混合型智能合约相继出现。预言机为区块链接入外部世界提供了安全的门户,让智能合约应用可以验证外部事件,基于外部系统触发操作,并完成在链上无法实现的计算任务。

Chainlink2.0 白皮书中提到,去中心化预言机网络(DONs)极大扩展了智能合约可以实现的链上合作方式。去中心化金融(DeFi)的快速崛起就是一个很好的例子。Chainlink 去中心化预言机网络将金融市场数据传输到区块链,支持 Aave 货币市场、Synthetix 衍生品平台、dYdX 杠杆交易市场以及 Ampleforth 算法稳定币等各种混合型智能合约协议,因此加速了 DeFi 的发展。

混合型智能合约的构成要素

混合型智能合约应用包含两个部分,即:1)智能合约——这是专门在区块链上运行的代码;2)去中心化的预言机网络——这是为智能合约提供的安全链下服务。这两个模块安全地无缝交互,共同形成了混合型智能合约应用。最后,链上代码通过许多独特的方式得到增强,并且激活了一系列全新的应用场景,突破了之前链上代码在技术、法律或金融等方面的限制。

混合型智能合约将两个完全不同的计算环境同步在一起,打造出区块链或预言机网络单独无法实现的应用功能,并且将这两个环境中独一无二的优势结合在一起。链上代码在极其安全且功能受限的区块链环境中运行,攻击表面较小,因此用户在执行和储存时可以获得极高的确定性,代码一定会严格执行,结果将被永远储存在链上,不可篡改。而 DON 则在链下运行,因此可以更灵活地实现更多功能并访问更多数据。

值得注意的是,DON 也具有非常高的防篡改性和可靠性,可以与智能合约相媲美,但不同的是,DON 是在封闭的链下环境中运行,并且采用了多种安全机制。每个 DON 都会为一个应用提供定制化的去中心化服务,也就是说同一条区块链上的其他智能合约与这个 DON 的性能没有任何关联,而且保障所有智能合约安全的底层区块链共识机制也不会有任何风险。DON 作为独立的服务,不仅在安全上具有优势,而且还兼具灵活性,可以验证并计算更复杂且开放式的链下数据。

比如,一些智能合约选择接入 DON 的标准是去中心化水平以及加密经济安全性,而另一些智能合约则会选择节点声誉高且采用了高级加密技术展开可验证隐私计算的 DON。在这些异构网络中,可以并行几千个或甚至几百万个 DON,每个 DON 之间不会相互依赖,并可以为具体应用提供专门的去中心化服务。同一个 DON 的用户也可以共摊服务成本(如:目前众多 DeFi 协议共同使用 Chainlink ETH/USD 喂价预言机,并分摊成本)。这个框架非常重要,可以同时为所有区块链和应用提供服务,比如为高速区块链上运行的应用接入链下数据并保障隐私。另外,去中心化程度较高的区块链上的应用也需要接入可扩展的计算资源。

混合型智能合约如何结合链上和链下计算资源

为了进一步了解链上和链下模块的差异,我们先为每个模块明确定义:

链上模块:区块链

维护账本,可靠地托管用户资产,并与私钥交互。

处理用户之间不可逆的转账交易,执行最终结算。

解决分歧,建立安全护栏,保障 DON 的链下服务正常运行。

链下:去中心化的预言机网络

从链下 API 安全地获取和验证数据,并传输到区块链和 layer-2 网络中的智能合约。

为区块链和 layer-2 网络中的智能合约展开各种计算任务。

将智能合约输出的数据传输至其他区块链或链下系统。

混合型智能合约结合了链上代码和链下去中心化预言机网络,实现更高级的区块链应用

Chainlink 去中心化服务为混合型智能合约保驾护航

定义了混合型智能合约之后,我们来讨论一下 Chainlink DON 为智能合约提供的各种去中心化服务。这些去中心化服务可以大致分为两类,即:链下数据和链下计算。

链下数据

DON 可以在各种链下数据和区块链之间搭起连通桥梁,为混合型智能合约输入所需数据。以下是初步可以访问的数据类型:

喂价——从几百家交易平台聚合的资产价格数据,数据基于交易量加权计算,并剔除了异常值和虚假交易。

储备金证明——关于通证资产当前储备金余额的最新数据,比如 WBTC 的比特币抵押资产,或 TUSD 的美元抵押资产。

任何 API——来自受密码保护 API 接口的付费数据,数据类型涵盖天气预报、 体育 比赛结果、企业后台数据以及物联网数据。

区块链中间件——区块链抽象层,使链下系统可以接入任何区块链网络中的智能合约,双向读写数据。

链下计算

DON 可以代表智能合约执行一系列链下计算,帮助智能合约获取某些数据,或者打造原生区块链上无法实现的功能,比如隐私保护、可扩展性以及公允排序。以下是目前已经实现和未来即将实现的部分 DON 计算功能:

Keeper 网络——指定期维护智能合约的自动化 bot,在适当的时间点启动合约,执行关键的链上功能。

链下报告(OCR)——以可扩展的方式聚合 DON 预言机节点响应的数据,然后将聚合数据在单笔交易中发送至链上,以降低链上成本。

可扩展的计算——为智能合约执行实现高吞吐量和低成本,采用现成的 layer-2 技术定期与链上同步。

可验证随机函数(VRF)——安全地生成可验证的随机数,采用加密证明技术,证明过程的完整性。

数据和计算隐私——保护隐私的预言机计算功能采用零知识证明(DECO)、可信硬件(Town Crier)、安全的多方计算以及特定的 DON 委员会制度,将敏感数据保密地传输至智能合约。

公允排序服务(FSS)——根据预定义的公平原则开展去中心化的交易排序,避免抢跑攻击和矿工可提取价值(MEV)。

链上合约隐私——将合约逻辑与结算结果解绑,保护智能合约交易隐私,比如通过 DON 的 Mixicles 功能在两方之间传输数据。

Chainlink 去中心化的预言机网络提供一系列丰富的服务,拓展了混合型智能合约应用的功能

混合型智能合约对全球各个行业带来的影响

DON 可以实现高级的混合型智能合约框架,将不同系统和区块链上的各个独立实体无缝连接,实现安全和通用的自动化交互。Chainlink 为开发者克服了智能合约的技术壁垒,开发者可以利用区块链的高确定性,并通过 DON 实现外部连接、隐私保障、可扩展性以及公允排序等各种关键功能。混合型智能合约不仅为网络中各个参与者创造了更可信和高效的合作空间,还将区块链网络接入传统链下基础架构,并且无需在后端做任何修改。

DON 将为众多智能合约应用提供所需的隐私保障和可扩展性,并涵盖大多数企业应用场景和众多 游戏 和金融应用,为其实现高吞吐量和实时决策。混合型智能合约还将激活一系列前所未有的全新应用场景,比如通过可验证随机数和去中心化交易排序实现基于算法的经济公平性和透明性。

已经感受到,或即将感受到混合型智能合约影响的部分主流行业:

身份信息——身份信息可自动验证,并保护信息隐私。智能合约可以定义所需的个人信息以及所需操作。DON 对这些数据展开计算,验证用户个人信息,并同时保护信息不透露给对手方,并且不会储存在链下系统。

金融——抗审查的开放式金融市场,访问不设门槛,信息透明。智能合约可以为买家和卖家定义交易规则,DON 可以使用链下数据定价和结算,并实现额外的功能,如:隐藏交易、KYC 验证、公允交易排序以及高速链下处理等。

供应链——在共享账本上运行的多方交易协议,将产品线数字化,基于验证过的数据跨多个系统进行自动化操作。智能合约可以定义合约义务、支付条款和惩罚机制。DON 可以利用隐私计算和物联网数据追踪运输信息、监控质量控制、验证客户身份并触发结算付款。

保险——基于预定义事件建立双边预测市场,并在此基础上创建参数型保险。智能合约可以定义保费和理赔流程,DON 可以将合约接入链下数据,获得报价并处理理赔申请。DON 还可以开展风险评估计算,从云平台等数据源获取复杂的风险评估结果,并以保密的方式验证用户身份。

游戏 ——自动发放 游戏 奖励,用户可以通过 NFT 完全拥有 游戏 内资产,并提供权威证明,证明所有参与者都有同样的获胜概率。智能合约可以定义 游戏 规则和奖励发放模式,DON 可以提供防篡改的随机数,保障 游戏 的公平性可以得到验证,并且奖励发放过程是公平的。 游戏 dApp 接入 DON 后,还可以接入增强现实的物联网传感器等一系列链下数据源,并在链下处理部分 游戏 功能,以提高 游戏 性能。

市场营销——营销活动基于各种参数和指标自动实时发放奖励。智能合约可以定义阶梯式的奖励发放模式,并设置具体的里程碑目标。DON 可以验证目标是否达成,并对客户数据和市场趋势展开保密计算,以更有效地评估营销活动。

治理——分布式社区可以安全公平地管理共享系统和资金池。智能合约可以定义完整的治理框架,DON 可以提供链下数据和计算资源,触发利润分发、费用分摊和身份认证等各种操作,有效抵御女巫攻击,验证各成员的参与度,或甚至实现自动化的决策流程。

最终,DON 可以提供所有无法在链上实现的服务,并为现有数据和系统带来更强大的加密安全保障,以启动链下服务生态。混合型智能合约基础架构可以丰富去中心化系统的合作方式,让各个区块链和非区块链基础设施可以安全可靠地无缝交互,并保障可扩展性、保密性、定制化和通用连接性。虽然目前加密货币资产规模已达数万亿美元,且 DeFi 经济规模逼近 1000 亿美元,但是区块链生态仍处于发展初期,还有巨大潜力未被挖掘,因此混合型智能合约和 Chainlink 去中心化预言机网络拥有巨大的应用空间和潜力。

如果你想立刻着手开发混合型智能合约应用,并需要接入链下数据或计算资源,请查看我们的开发者文档,你也可以在 Discord 频道询问技术问题或与 Chainlink 专家透过电话沟通。

㈦ 区块链应用的发展历程是怎样的

区块链的发展历程可以分为三个阶段。区块链科学研究所创始人梅兰妮·斯万,在她的《区块链:新经济蓝图及导读》这本书中,根据区块链的应用发展状况分为三个阶段:区块链1.0、2.0和3.0。
 
一、区块链1.0 加密货币时代(2008-2013)
 
2008年,中本聪首次提出了比特币和区块链的概念,随后在2009年1月,第一个区块链问世。在这个阶段,人们更多关注的加密货币的交易,区块链仅仅作为底层技术,充当“公共帐薄”的作用。
 
二、区块链2.0 智能合约时代(2014-2017)
 
2014年,"区块链2.0”成为去中心化区块链数据库的代名词。在这个阶段,人们主要关注平台的应用。任何人都可以在区块链上上传和执行智能合约,并且执行完毕后会自动获得奖励。由于这个交易过程不需要任何中介,因此人们的隐私得到了极大的保护。
 
三、区块链3.0 大规模应用时代(2018-)
 
这个阶段,人们开始构建一个完全去中心化的数据网络,区块链技术的应用也不再局限于经济领域,而是扩大到艺术、法律、房地产、医院、人力资源等领域。

㈧ 区块链智能合同支付是什么

区块链智能合同支付指的是交易与非交易。首先要明确的就是区块链智能合同并不是真正的合同。根据区块链的可编程特性,人们可以将合约以代码的形式放在区块链上,并在商定的条件下自动执行,这被称为智能合同。它只是一个广泛的定义。智能合同是一段涉及资产和交易的代码。我们只有将其放在区块链上,才能有效防止“盗版”和“篡改”。事实上在区块链出现之前,智能合同没有得到太多发展。
随着区块链技术的发展和成熟,智能合约将非常有用。智能合约是新参与者达成共识的新途径。它的执行不依赖于任何组织或个人,它是自己执行的,甚至没有默认情况。智能合同将成为全球经济的基本结构。任何人都可以使用智能合同参与经济活动,而无需事先审查和高昂的前期成本。在传统的合同制定中,人们必须选择值得信赖的人和机构,而智能合同从许多经济交易中消除了第三方的必要信任。
随着虚拟数字货币的出现,区块链应运而生。从本质上来看,区块链是一种分散的数据库、分布式账本技术,也就是分布式机构中的数据存储。与传统的集中式存储比起来,分散式存储使得监管更加公开透明,避免了篡改和伪造之类的风险。所以说区块链在电子合同领域的应用为电子合同的保管增加了安全性。
区块链解决了电子合同使用过程中的认证存储、信用增强和真实认证问题。电子合同的存款收据容易通过第三方受到安全漏洞的影响,导致数据泄漏。存款收据单一,出现问题时难以追踪。平台还质疑验证数据的有效性。区块链技术的应用可以在电子合同签署过程中产生数据链加密存储,一旦链上的数据难以篡改,也可以通过时间戳技术准确记录签署时间和操作信息,并保存证据链,与第三方机构合作,确保电子合同签署的安全性。区块链存款和第三方机构存款后,司法采纳证据的可信度得到有效提升,司法鉴定报告和公证可以快速申请。同时,区块链智能合约也保证了合约真实性的真实性和可靠性。确保电子合同具有完全法律效力

相关推荐

评论列表
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~
关闭

用微信“扫一扫”