区块链怎么解决保密问题,区块链保密性能强吗区块链怎么解决保密

zhousys 区块链知识 2023-11-12 07:41 591

摘要:区块链怎么解决保密1.区块链应用在网络安全中发挥什么作用区块链技术可以帮助我们提升加密以及认证等保护机制的安全性,这对于物联网安全以及DDoS防御社区来说绝对...

区块链怎么解决保密

1. 区块链应用在网络安全中发挥什么作用

区块链技术可以帮助我们提升加密以及认证等保护机制的安全性,这对于物联网安全以及DDoS防御社区来说绝对是一条好消息!

区块链就有成为安全社区一个重要解决方案的潜力,对于金融、能源和制造业来说亦是如此。就目前来说,验证比特币交易是它的一个主要用途,但这种技术也可以扩展到智能电网系统以及内容交付网络等应用场景之中。

如何将区块链应用到网络安全之中?

无论是保护数据完整性,还是利用数字化识别技术来防止物联网设备免受DDoS攻击,区块链技术都可以发挥关键作用,至少现在它已经显示出了这种能力。

物联网安全以及DDoS防御社区

某家区块链初创公司声称他们的去中心化“记账“系统可以帮助用户抵御流量超过100Gbps的DDoS攻击。有趣的是,这家公司表示这种去中心化的系统允许用户出租自己的额外带宽,并将带宽访问权限”提交“到区块链分布式节点,当网站遭受DDoS攻击时,网站可以利用这些出租带宽来缓解DDoS攻击。

提升保密性和数据完整性

虽然区块链最初的设计并没有考虑到具体的访问控制,但是现在某些区块链技术实现已经解决了数据保密以及访问控制的问题了。在这个任何数据都有可能被篡改的时代,这显然是个严重问题,但是完整的数据加密恶意保证数据在传输过程中不被他人通过中间人攻击等形式来访问或篡改。

整个IoT产业都需要数据完整性保障。比如说,IBM在其Watson IoT平台中就允许用户在私有区块链网络中管理IoT数据,而这种区块链网络已经整合进了他们Big Blue的云服务中。除此之外,爱立信公司的区块链数据完整性服务有提供了全面的审计、兼容和可信赖数据服务来允许开发人员利用Predix PaaS平台来进行技术实现。

其中最佳应用就是我们公共事业部门的转型和创建以市民为中心的基础设施了。这将使市民能够拥有自己的身份,每一笔交易都可验证。我们可以使用智慧合约和经签名的断言来制定公共服务的要素,比如待遇给付等等。

物联网&智能设备

现在整个IT社区的注意力已经开始转移到物联网&智能设备的身上了,而安全性绝对是首要考虑因素之一。虽然物联网可以提升我们的工作和生产效率,但这也意味着我们需要面临更多的安全风险。很多公司因而寻求应用区块链来保护IoT及工业IoT(IIoT)设备安全的方法——因为区块链技术可增强身份验证,改善数据溯源和流动性,并辅助记录管理。

根据卡巴斯基实验室反病毒专家Alexey Malanov的说法,区块链技术有助于追踪黑客攻击,他补充道:

“网络入侵者通常会清除权限日志,以隐藏未授权访问设备的痕迹。但如果日志分布在多个设备中(例如通过区块链技术实现),则可以将风险尽可能降低。”

数字经济发展基金主席German Klimenko表示:“目前,国防部正在大力推动IT发展和研究工作,这对行业来说是一件好事。”

北约和五角大楼也在研究区块链“防御性”应用。该技术被积极用于保护系统免受网络攻击。北约将使用区块链来保护金融信息、供应和物流链,而五角大楼正在开发一个防黑客攻击的数据传输系统。

总的来说,区块链技术并不是万能的,至少现在还不是。无论是从技术完整性出发,还是从系统实现方面考量,现在的区块链技术都无法100%确保设备的安全。注:以上内容来源网络。

2. 利用区块链技术实现不记密码加密存储验证,解决离线安全存储问题

本文介绍一种利用区块链技术配合个人存储设备进行网络安全验证的方法

以微嘟为代表的不记密码快捷加密存储设备,已经完美做到了快捷安全存储,但美中不足的是无法通过网络查询设备何时被使用,以及无法预知极端情况下设备被离线破解等。

利用区块链技术可以解决此问题,具体工作原理:

在设备连接PC端,并检测到射频ID验证通过后,接入设备内的特定硬件,此时自动通过安装在PC端的程序向特定的区块链网络上广播设备打开时间的等信息。在得到区块链网络确认后,才授权设备后级存储用户重要数据的存储颗粒接入。因为每次设备打开都需要网络授权及相关的信息都存储在区块链网络上了,所以有效的避免了不明目的的人在用户不知情的情况下偷偷地打开设备。

多了一层区块链的网络验证是不是发现设备的安全性提高了好多?

下面以微嘟链安全验证为示意:

3. 区块链如何带来个人数据保护“革命”

区块链如何带来个人数据保护“革命”
美国媒体当地时间17日晚间披露说,深陷滥用个人隐私数据丑闻的英国“剑桥分析”公司原本计划推出个人隐私数据存储服务,并通过区块链技术以加密货币的形式出售。个人信息加密货币化的概念其实并不新鲜,这个设想的关键在于每个人对个人信息的自主权。一些业内人士认为,区块链技术可能带来个人数据保护“革命”。

大数据时代,个人的数据被认为是黄金般珍贵。个人数据泄漏令人担忧,但绝大部分人不可能因为害怕数据被收集而切断与互联网的联系,而现阶段有责任保管个人信息的企业、学校、酒店、社交网站等往往担责不力。专家们认为,区块链技术作为一种带有加密、信任、点对点、难篡改等特征的“中间件”,有望解决这个难题。
区块链技术的出现令个人数据掌控权从互联网公司转移到用户自己手中,使人人掌控自己的个人数据成为可能。通过它,用户个人数据可以与个人数字身份证相关联,用户可以选择数字身份证是匿名、化名或公开,还可以随时随地从任何设备访问区块链应用平台,控制他们的互联网个人数据。
举例来说,某人的身份证号码在区块链上的信息可能被转换为一串密文,人脸图像信息也被加密。他在酒店办理入住时,仅需通过应用将身份证号码密文发送给酒店,酒店将信息同区块链应用上的加密数据比对,不需要知道他的任何真实信息,但只要加密数据比对结果相符就可以保证入住。
与此同时,大数据及人工智能开发需要大量用户数据资源,用户可以将个人数据作为加密货币选择性出售,同时收到一定回报。例如,如果电商需要用户数据开发一个新应用,用户可以选择出售自己的购物历史数据,但自己的地址账号等信息仍可以保密。
在基因测序领域,区块链应用已经开始让传统基因测序公司出售个人数据的“生财之道”受到挑战。
近年来,面向普通人的基因测序服务备受追捧。以美国“23与我”染色体生物技术公司为例,消费者仅需不到100美元和几口唾液就能得到家族遗传信息,如果再付80美元,就能在原始数据基础上获得遗传健康风险等方面的深度解析。然而这家企业并不满足于测序服务收入,还将自己掌握的数百万份客户遗传数据分类打包卖给制药公司,仅2015年初出售的帕金森病数据就高达6000万美元。不少类似的生物技术公司一边从消费者获得服务收入,一边转卖消费者的数据“挣双份钱”。
今年2月,美国哈佛大学遗传学家乔治·彻奇创建了“星云基因”公司,希望通过区块链技术打破这个格局。该公司计划以低于1000美元的价格完成全基因组测序,这一费用由客户承担,作为回报,客户在直观了解自身遗传信息对应疾病风险的同时,也拥有对测序数据的自主权。遗传信息将通过区块链技术保障安全,同时加密货币化,按照顾客的意愿进行存储出售等交易。
这家公司计划推出一种“星云币”作为交易媒介,顾客可以将自己的遗传信息兑换为“星云币”,也可以用“星云币”支付自己的测序费用,制药公司可以用传统货币购买“星云币”来获得普通人的遗传信息数据,整个交易买卖过程都通过区块链平台完成,加密透明且安全。
彻奇表示,在综合测序花费、遗传信息保护、数据管理及基因组大数据处理等多方面因素后,区块链技术让更多人真正地“拥有”自己的遗传信息。

4. 区块链安全问题应该怎么解决

区块链项目(尤其是公有链)的一个特点是开源。通过开放源代码,来提高项目的可信性,也使更多的人可以参与进来。但源代码的开放也使得攻击者对于区块链系统的攻击变得更加容易。近两年就发生多起黑客攻击事件,近日就有匿名币Verge(XVG)再次遭到攻击,攻击者锁定了XVG代码中的某个漏洞,该漏洞允许恶意矿工在区块上添加虚假的时间戳,随后快速挖出新块,短短的几个小时内谋取了近价值175万美元的数字货币。虽然随后攻击就被成功制止,然而没人能够保证未来攻击者是否会再次出击。
当然,区块链开发者们也可以采取一些措施
一是使用专业的代码审计服务,
二是了解安全编码规范,防患于未然。
密码算法的安全性
随着量子计算机的发展将会给现在使用的密码体系带来重大的安全威胁。区块链主要依赖椭圆曲线公钥加密算法生成数字签名来安全地交易,目前最常用的ECDSA、RSA、DSA 等在理论上都不能承受量子攻击,将会存在较大的风险,越来越多的研究人员开始关注能够抵抗量子攻击的密码算法。
当然,除了改变算法,还有一个方法可以提升一定的安全性:
参考比特币对于公钥地址的处理方式,降低公钥泄露所带来的潜在的风险。作为用户,尤其是比特币用户,每次交易后的余额都采用新的地址进行存储,确保有比特币资金存储的地址的公钥不外泄。
共识机制的安全性
当前的共识机制有工作量证明(Proof of Work,PoW)、权益证明(Proof of Stake,PoS)、授权权益证明(Delegated Proof of Stake,DPoS)、实用拜占庭容错(Practical Byzantine Fault Tolerance,PBFT)等。
PoW 面临51%攻击问题。由于PoW 依赖于算力,当攻击者具备算力优势时,找到新的区块的概率将会大于其他节点,这时其具备了撤销已经发生的交易的能力。需要说明的是,即便在这种情况下,攻击者也只能修改自己的交易而不能修改其他用户的交易(攻击者没有其他用户的私钥)。
在PoS 中,攻击者在持有超过51%的Token 量时才能够攻击成功,这相对于PoW 中的51%算力来说,更加困难。
在PBFT 中,恶意节点小于总节点的1/3 时系统是安全的。总的来说,任何共识机制都有其成立的条件,作为攻击者,还需要考虑的是,一旦攻击成功,将会造成该系统的价值归零,这时攻击者除了破坏之外,并没有得到其他有价值的回报。
对于区块链项目的设计者而言,应该了解清楚各个共识机制的优劣,从而选择出合适的共识机制或者根据场景需要,设计新的共识机制。
智能合约的安全性
智能合约具备运行成本低、人为干预风险小等优势,但如果智能合约的设计存在问题,将有可能带来较大的损失。2016 年6 月,以太坊最大众筹项目The DAO 被攻击,黑客获得超过350 万个以太币,后来导致以太坊分叉为ETH 和ETC。
对此提出的措施有两个方面:
一是对智能合约进行安全审计,
二是遵循智能合约安全开发原则。
智能合约的安全开发原则有:对可能的错误有所准备,确保代码能够正确的处理出现的bug 和漏洞;谨慎发布智能合约,做好功能测试与安全测试,充分考虑边界;保持智能合约的简洁;关注区块链威胁情报,并及时检查更新;清楚区块链的特性,如谨慎调用外部合约等。
数字钱包的安全性
数字钱包主要存在三方面的安全隐患:第一,设计缺陷。2014 年底,某签报因一个严重的随机数问题(R 值重复)造成用户丢失数百枚数字资产。第二,数字钱包中包含恶意代码。第三,电脑、手机丢失或损坏导致的丢失资产。
应对措施主要有四个方面:
一是确保私钥的随机性;
二是在软件安装前进行散列值校验,确保数字钱包软件没有被篡改过;
三是使用冷钱包;
四是对私钥进行备份。

5. 区块链技术如何提升互联网保险安全性

重庆金窝窝网络分析区块链技术的安全性如下:
1-区块链技术有利于加强对客户信息的保护;
2-区块链技术能进一步提升消费体验;
3-区块链技术可降低信息不对称风险;
4-区块链技术能保证交易信息安全真实可靠。

6. 区块链的加密技术

数字加密技能是区块链技能使用和开展的关键。一旦加密办法被破解,区块链的数据安全性将受到挑战,区块链的可篡改性将不复存在。加密算法分为对称加密算法和非对称加密算法。区块链首要使用非对称加密算法。非对称加密算法中的公钥暗码体制依据其所依据的问题一般分为三类:大整数分化问题、离散对数问题和椭圆曲线问题。第一,引进区块链加密技能加密算法一般分为对称加密和非对称加密。非对称加密是指集成到区块链中以满意安全要求和所有权验证要求的加密技能。非对称加密通常在加密和解密进程中使用两个非对称暗码,称为公钥和私钥。非对称密钥对有两个特点:一是其间一个密钥(公钥或私钥)加密信息后,只能解密另一个对应的密钥。第二,公钥可以向别人揭露,而私钥是保密的,别人无法通过公钥计算出相应的私钥。非对称加密一般分为三种首要类型:大整数分化问题、离散对数问题和椭圆曲线问题。大整数分化的问题类是指用两个大素数的乘积作为加密数。由于素数的出现是没有规律的,所以只能通过不断的试算来寻找解决办法。离散对数问题类是指基于离散对数的困难性和强单向哈希函数的一种非对称分布式加密算法。椭圆曲线是指使用平面椭圆曲线来计算一组非对称的特殊值,比特币就采用了这种加密算法。非对称加密技能在区块链的使用场景首要包含信息加密、数字签名和登录认证。(1)在信息加密场景中,发送方(记为A)用接收方(记为B)的公钥对信息进行加密后发送给

B,B用自己的私钥对信息进行解密。比特币交易的加密就属于这种场景。(2)在数字签名场景中,发送方A用自己的私钥对信息进行加密并发送给B,B用A的公钥对信息进行解密,然后确保信息是由A发送的。(3)登录认证场景下,客户端用私钥加密登录信息并发送给服务器,服务器再用客户端的公钥解密认证登录信息。请注意上述三种加密计划之间的差异:信息加密是公钥加密和私钥解密,确保信息的安全性;数字签名是私钥加密,公钥解密,确保了数字签名的归属。认证私钥加密,公钥解密。以比特币体系为例,其非对称加密机制如图1所示:比特币体系一般通过调用操作体系底层的随机数生成器生成一个256位的随机数作为私钥。比特币的私钥总量大,遍历所有私钥空间获取比特币的私钥极其困难,所以暗码学是安全的。为便于辨认,256位二进制比特币私钥将通过SHA256哈希算法和Base58进行转化,构成50个字符长的私钥,便于用户辨认和书写。比特币的公钥是私钥通过Secp256k1椭圆曲线算法生成的65字节随机数。公钥可用于生成比特币交易中使用的地址。生成进程是公钥先通过SHA256和RIPEMD160哈希处理,生成20字节的摘要成果(即Hash160的成果),再通过SHA256哈希算法和Base58转化,构成33个字符的比特币地址。公钥生成进程是不可逆的,即私钥不能从公钥推导出来。比特币的公钥和私钥通常存储在比特币钱包文件中,其间私钥最为重要。丢掉私钥意味着丢掉相应地址的所有比特币财物。在现有的比特币和区块链体系中,现已依据实践使用需求衍生出多私钥加密技能,以满意多重签名等愈加灵敏杂乱的场景。

7. 区块链使用安全的问题该怎么解决

这里需要提到区块链的基本系统结构有以下几种
①网络路由 ②密码算法 ③脚本系统 ③共识机制
区块链安全问题的话,主要是由脚本系统来完成的脚本系统,在区块链技术,当中是一个相对来说抽象的概念也是极其重要的一个功能,区块链中,之所以能形成一个有价值的网络依靠的就是脚本系统,就像发动机一样驱动的,区块链,不断地进行数据的收发所谓脚本就是指一组成规则再确认系统中某些系统的程序,规则是固定的,比如在比特币系统中只能进行比特币发送与接收发送与接收,就是通过比特币的脚本程序来完成的,系统允许用户自主编程序规则,好了之后就可以部署,到区块链账本中,这样就可以扩展整个区块链系统的功能,如以太坊就是通过这一套自定义的脚本系统,从而实现了智能合约的功能,那么具体的场景应用或者说实际生活案例比如说订单物流信息供应链信息。

8. 区块链:防篡改的哈希加密算法

同学A和B在教室里抛硬币,赌谁打扫卫生,正面朝上,则A打扫,反面朝上,则B打扫,这个策略没有什么问题。

然而,如果把情景迁移到网络聊天室,A和B同样进行抛硬币的游戏,估计B就不会答应了,因为当A抛了硬币,B不论是猜

正面还是反面,A都可以说B猜错了。

怎么解决这个问题呢?要不先给抛硬币的结果加密,B再猜?这个方法可以试一下。

假设任意奇数代表硬币正面,任意偶数代表反面。A想一个数375,然后乘以一个258,把其结果告诉B为96750,并声明A想的375为密钥,由他保管。
在接下来验证结果时,A可以谎称258为他想的数,375为密钥,A还是立于不败之地。那如果A事先把密钥告诉B呢?B可以直接算出原始数字,失去了保密作用。

这种知道加密方法就知道了解密方法显然行不通,那有没有一种方法,知道了加密方法仍然无法恢复原文呢?

显然是有的,在加密过程中加入不可逆运算就OK了。A设计新的加密方式:

假设A想的数是375,进行加密:

B拿到结果120943,但他几乎不能根据120943反算出密匙375。
如果B想要验证A是否说谎:

终于可以抛硬币了……

这种丢掉一部分信息的加密方式称为“单向加密”,也叫 哈希算法

有个问题:

这个是有可能的,但可以解决,就是增加上述算法的难度,以致于A很难很难找到。

根据以上表述,一个可靠的哈希算法,应该满足:

密码学中的哈希函数有3个重要的性质,即 抗碰撞性、原像不可逆、难题友好性

碰撞性,就是指A同学事先找出一奇一偶使得哈希结果一致,在计算上是不可行的。

首先,把大空间桑拿的消息压缩到小空间上,碰撞肯定是存在的。假设哈希值长度固定为256位,如果顺序取1,2,…2 256 +1, 这2 256 +1个输入值,逐一计算其哈希值,肯定能找到两个输入值使得其哈希值相同。

A同学,看到这里时, 请不要高兴的太早。因为你得有时间把它算出来,才是你的。为什么这么说呢?

根据生日悖论,如果随机挑选其中的2 130 +1输入,则有99.8%的概率发现至少一对碰撞输入。那么对于哈希值长度为256为的哈希函数,平均需要完成2 128 次哈希计算,才能找到碰撞对。如果计算机每秒进行10000次哈希计算,需要约10 27 年才能完成2 128 次哈希计算。

A同学,不要想着作弊了,估计你活不了这么久。当然如果计算机运算能力大幅提升,倒是有可能。

那么完整性还用其他什么用途呢?

用来验证信息的完整性,因为如果信息在传递过程中别篡改,那么运行哈希计算得到的哈希值与原来的哈希值不一样。

所以,在区块链中,哈希函数的抗碰撞性可以用来做区块和交易的完整性验证。

因为一个哈希值对应无数个明文,理论上你并不知道哪个是。就如,4+5=9和2+7=9的结果一样,知道我输入的结果是9,但能知道我输入的是什么数字吗?

如果,对消息m进行哈希计算时,在引入一个随机的前缀r,依据哈希值H(r||m),难以恢复出消息m,这代表该哈希函数值隐藏了消息m。

所以,B同学,根据结果想反推出原数据,这是不大可能的事,就犹如大海里捞针。

难题好友性,指没有便捷的方法去产生一满足特殊要求的哈希值。是什么意思呢,通俗的讲,就是没有捷径,需要一步一步算出来。假如要求得到的哈希结果以若干个0开头,那么计算找到前3位均为0的哈希值和找到前6位均为0的哈希值,其所需的哈希计算次数是呈一定数量关系。

这个可以怎么用呢?在区块链中,可以作为共识算法中的工作量证明。

主要描述了哈希函数的3个重要性质: 抗碰撞性、原像不可逆、难题友好性

因为这些重要性质,区块链中的区块和交易的完整性验证、共识算法的工作量证明等功能用哈希函数来实现。

[1].邹均,张海宁.区块链技术指南[M].北京:机械出版社,2016.11
[2].长铗,韩锋.区块链从数字货币到信用社会[M].北京:中信出版社,2016.7
[3].张健.区块链定义未来金融与经济新格局[M].北京:机械工业出版社,2016.6

9. 区块链怎么解决电子存证中的自证问题

电子存证是指通过时间戳,哈希算法,电子签名指纹认证信息保密技术手段来实现自证问题的,都是具有法律效力的。
1.时间戳:真实的事件记录,证明事件在什么时间、什么地点发生过,它是由我国中科院国家授时中心与北京联合信任技术服务有限公司负责建设的我国第三方可信时间戳认证服务。由国家授时中心负责时间的授时与守时监测
2.哈希算法: 比如,我们在一个乘法网注册一个账号,如果网站把密码保存起来,那这个网站不论有多安全,也会有被盗取的风险。但是如果用保存密码的哈希值代替保存密码,就没有这个风险了,因为哈希值加密过程是不可逆的。
当前也有很多有远见企业涉足这个领域,他们普遍都是通过一个第三方机构在乘法网存证,创建商业保密体系,他们却无法从技术上修改过数据,目前可以通过“区块链”技术很好的解决这一自证问题。

相关推荐

评论列表
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~
关闭

用微信“扫一扫”